371 research outputs found

    The 44Ti-powered spectrum of SN 1987A

    Full text link
    SN 1987A provides a unique opportunity to study the evolution of a supernova from explosion into very late phases. Due to the rich chemical structure, the multitude of physical process involved, and extensive radiative transfer effects, detailed modeling is needed to interpret the emission from this and other supernovae. In this paper, we analyze the late-time (~8 years) HST spectrum of the SN 1987A ejecta, where 44Ti is the dominant power source. Based on an explosion model for a 19 Msun progenitor, we compute a model spectrum by calculating the degradation of positrons and gamma-rays from the radioactive decays, solving the equations governing temperature, ionization balance and NLTE level populations, and treating the radiative transfer with a Monte Carlo technique. We obtain a UV/optical/NIR model spectrum which is found to reproduce most of the lines in the observed spectrum to good accuracy. We find non-local radiative transfer in atomic lines to be an important process also at this late stage of the supernova, with ~30% of the emergent flux in the optical and NIR coming from scattering/fluorescence. We investigate the question of where the positrons deposit their energy, and favor the scenario where they are locally trapped in the Fe/He clumps by a magnetic field. Energy deposition into these largely neutral Fe/He clumps makes Fe I lines prominent in the emergent spectrum. Using the best available estimates for the dust extinction, we determine the amount of 44Ti produced in the explosion to 1.5\pm0.5 * 10^-4 Msun.Comment: 23 pages, 9 figures. 44Ti mass updated from 1.4E-4 to 1.5E-4 Msu

    Reconciling the infrared catastrophe and observations of SN 2011fe

    Full text link
    The observational effects of the 'Infrared Catastrophe' are discussed in view of the very late observations of the Type Ia SN 2011fe. Our model spectra at 1000d take non-local radiative transfer into account, and find that this has a crucial impact on the spectral formation. Although rapid cooling of the ejecta to a few 100 K occurs also in these models, the late-time optical/NIR flux is brighter by 1-2 magnitudes due to redistribution of UV emissivity, resulting from non-thermal excitation and ionization. This effect brings models into better agreement with late-time observations of SN 2011fe and other Type Ia supernovae, and offers a solution to the long standing discrepancy between models and observations. The models show that spectral formation shifts from Fe II and Fe III at 300d to Fe I at 1000d, which explains the apparent wavelength shifts seen in SN2011fe. We discuss effects of time dependence and energy input from 57Co, finding both to be important at 1000d.Comment: 5 pages, 5 figures. Accepted for publication in ApJ Letter

    Monte-Carlo methods for NLTE spectral synthesis of supernovae

    Full text link
    We present JEKYLL, a new code for modelling of supernova (SN) spectra and lightcurves based on Monte-Carlo (MC) techniques for the radiative transfer. The code assumes spherical symmetry, homologous expansion and steady state for the matter, but is otherwise capable of solving the time-dependent radiative transfer problem in non-local-thermodynamic-equilibrium (NLTE). The method used was introduced in a series of papers by Lucy, but the full time-dependent NLTE capabilities of it have never been tested. Here, we have extended the method to include non-thermal excitation and ionization as well as charge-transfer and two-photon processes. Based on earlier work, the non-thermal rates are calculated by solving the Spencer-Fano equation. Using a method previously developed for the SUMO code, macroscopic mixing of the material is taken into account in a statistical sense. In addition, a statistical Markov-chain model is used to sample the emission frequency, and we introduce a method to control the sampling of the radiation field. Except for a description of JEKYLL, we provide comparisons with the ARTIS, SUMO and CMFGEN codes, which show good agreement in the calculated spectra as well as the state of the gas. In particular, the comparison with CMFGEN, which is similar in terms of physics but uses a different technique, shows that the Lucy method does indeed converge in the time-dependent NLTE case. Finally, as an example of the time-dependent NLTE capabilities of JEKYLL, we present a model of a Type IIb SN, taken from a set of models presented and discussed in detail in an accompanying paper. Based on this model we investigate the effects of NLTE, in particular those arising from non-thermal excitation and ionization, and find strong effects even on the bolometric lightcurve. This highlights the need for full NLTE calculations when simulating the spectra and lightcurves of SNe.Comment: Accepted for publication by Astronomy & Astrophysic

    Late-time spectral line formation in Type IIb supernovae, with application to SN 1993J, SN 2008ax, and SN 2011dh

    Get PDF
    We investigate line formation processes in Type IIb supernovae (SNe) from 100 to 500 days post-explosion using spectral synthesis calculations. The modeling identifies the nuclear burning layers and physical mechanisms that produce the major emission lines, and the diagnostic potential of these. We compare the model calculations with data on the three best observed Type IIb SNe to-date - SN 1993J, SN 2008ax, and SN 2011dh. Oxygen nucleosynthesis depends sensitively on the main-sequence mass of the star and modeling of the [O I] 6300, 6364 lines constrains the progenitors of these three SNe to the M_ZAMS=12-16 M_sun range (ejected oxygen masses 0.3-0.9 M_sun), with SN 2011dh towards the lower end and SN 1993J towards the upper end of the range. The high ejecta masses from M_ZAMS >= 17 M_sun progenitors give rise to brighter nebular phase emission lines than observed. Nucleosynthesis analysis thus supports a scenario of low/moderate mass progenitors for Type IIb SNe, and by implication an origin in binary systems. We demonstrate how oxygen and magnesium recombination lines may be combined to diagnose the magnesium mass in the SN ejecta. For SN 2011dh, a magnesium mass of of 0.02-0.14 M_sun is derived, which gives a Mg/O production ratio consistent with the solar value. Nitrogen left in the He envelope from CNO-burning gives strong [N II] 6548, 6583 emission lines that dominate over H-alpha emission in our models. The hydrogen envelopes of Type IIb SNe are too small and dilute to produce any noticeable H-alpha emission or absorption after ~150 days, and nebular phase emission seen around 6550 A is in many cases likely caused by [N II] 6548, 6583. Finally, the influence of radiative transport on the emergent line profiles is investigated...(abridged)Comment: Published versio

    Discovery of molecular hydrogen in SN 1987A

    Full text link
    Both CO and SiO have been observed at early and late phases in SN 1987A. H_2 was predicted to form at roughly the same time as these molecules, but was not detected at early epochs. Here we report the detection of NIR lines from H_2 at 2.12 mu and 2.40 mu in VLT/SINFONI spectra obtained between days 6489 and 10,120. The emission is concentrated to the core of the supernova in contrast to H-alpha and approximately coincides with the [Si I]/[Fe II] emission detected previously in the ejecta. Different excitation mechanisms and power sources of the emission are discussed. From the nearly constant H_2 luminosities we favour excitation resulting from the 44Ti decay.Comment: 5 pages 3 figures, accepted for ApJ Letter

    Emission line models for the lowest-mass core collapse supernovae. I: Case study of a 9 MM_\odot one-dimensional neutrino-driven explosion

    Full text link
    A large fraction of core-collapse supernovae (CCSNe), 30-50%, are expected to originate from the low-mass end of progenitors with MZAMS =812 MM_{\rm ZAMS}~= 8-12~M_\odot. However, degeneracy effects make stellar evolution modelling of such stars challenging, and few predictions for their supernova light curves and spectra have been presented. Here we calculate synthetic nebular spectra of a 9 MM_\odot Fe CCSN model exploded with the neutrino mechanism. The model predicts emission lines with FWHM\sim1000 km/s, including signatures from each deep layer in the metal core. We compare this model to observations of the three subluminous IIP SNe with published nebular spectra; SN 1997D, SN 2005cs, and SN 2008bk. The prediction of both line profiles and luminosities are in good agreement with SN 1997D and SN 2008bk. The close fit of a model with no tuning parameters provides strong evidence for an association of these objects with low-mass Fe CCSNe. For SN 2005cs, the interpretation is less clear, as the observational coverage ended before key diagnostic lines from the core had emerged. We perform a parameterised study of the amount of explosively made stable nickel, and find that none of these three SNe show the high 58^{58}Ni/56^{56}Ni ratio predicted by current models of electron capture SNe (ECSNe) and ECSN-like explosions. Combined with clear detection of lines from O and He shell material, these SNe rather originate from Fe core progenitors. We argue that the outcome of self-consistent explosion simulations of low-mass stars, which gives fits to many key observables, strongly suggests that the class of subluminous Type IIP SNe is the observational counterpart of the lowest mass CCSNe.Comment: Resubmitted to MNRAS after referee comment

    Spectra of supernovae in the nebular phase

    Full text link
    When supernovae enter the nebular phase after a few months, they reveal spectral fingerprints of their deep interiors, glowing by radioactivity produced in the explosion. We are given a unique opportunity to see what an exploded star looks like inside. The line profiles and luminosities encode information about physical conditions, explosive and hydrostatic nucleosynthesis, and ejecta morphology, which link to the progenitor properties and the explosion mechanism. Here, the fundamental properties of spectral formation of supernovae in the nebular phase are reviewed. The formalism between ejecta morphology and line profile shapes is derived, including effects of scattering and absorption. Line luminosity expressions are derived in various physical limits, with examples of applications from the literature. The physical processes at work in the supernova ejecta, including gamma-ray deposition, non-thermal electron degradation, ionization and excitation, and radiative transfer are described and linked to the computation and application of advanced spectral models. Some of the results derived so far from nebular-phase supernova analysis are discussed.Comment: Book chapter for 'Handbook of Supernovae,' edited by Alsabti and Murdin, Springer. 51 pages, 14 figure

    The nebular spectra of SN 2012aw and constraints on stellar nucleosynthesis from oxygen emission lines

    Get PDF
    We present nebular phase optical and near-infrared spectroscopy of the Type IIP supernova SN 2012aw combined with NLTE radiative transfer calculations applied to ejecta from stellar evolution/explosion models. Our spectral synthesis models generally show good agreement with the ejecta from a MZAMS = 15 Msun progenitor star. The emission lines of oxygen, sodium, and magnesium are all consistent with the nucleosynthesis in a progenitor in the 14 - 18 Msun range. We also demonstrate how the evolution of the oxygen cooling lines of [O I] 5577 A, [O I] 6300 A, and [O I] 6364 A can be used to constrain the mass of oxygen in the non-molecularly cooled ashes to < 1 Msun, independent of the mixing in the ejecta. This constraint implies that any progenitor model of initial mass greater than 20 Msun would be difficult to reconcile with the observed line strengths. A stellar progenitor of around MZAMS = 15 Msun can consistently explain the directly measured luminosity of the progenitor star, the observed nebular spectra, and the inferred pre-supernova mass-loss rate. We conclude that there is still no convincing example of a Type IIP explosion showing the nucleosynthesis expected from a MZAMS > 20 Msun progenitor.Comment: Accepted for publication in MNRA

    The morphology of the ejecta in Supernova 1987A: a study over time and wavelength

    Get PDF
    We present a study of the morphology of the ejecta in Supernova 1987A based on images and spectra from the HST as well as integral field spectroscopy from VLT/SINFONI. The HST observations were obtained between 1994 - 2011 and primarily probe the outer hydrogen-rich zones of the ejecta. The SINFONI observations were obtained in 2005 and 2011 and instead probe the [Si I]/[Fe II] emission from the inner regions. We find a strong temporal evolution of the morphology in the HST images, from a roughly elliptical shape before ~5,000 days, to a more irregular, edge-brightened morphology thereafter. This transition is a natural consequence of the change in the dominant energy source powering the ejecta, from radioactive decay before ~5,000 days to X-ray input from the circumstellar interaction thereafter. The [Si I]/[Fe II] images display a more uniform morphology, which may be due to a remaining significant contribution from radioactivity in the inner ejecta and the higher abundance of these elements in the core. Both the H-alpha and the [Si I]/[Fe II] line profiles show that the ejecta are distributed fairly close to the plane of the inner circumstellar ring, which is assumed to define the rotational axis of the progenitor. The H-alpha emission extends to higher velocities than [Si I]/[Fe II] as expected. There is no clear symmetry axis for all the emission and we are unable to model the ejecta distribution with a simple ellipsoid model with a uniform distribution of dust. Instead, we find that the emission is concentrated to clumps and that the emission is distributed somewhat closer to the ring in the north than in the south. This north-south asymmetry may be partially explained by dust absorption. We compare our results with explosion models and find some qualitative agreement, but note that the observations show a higher degree of large-scale asymmetry.Comment: Accepted for publication in Ap

    Constraints on explosive silicon burning in core-collapse supernovae from measured Ni/Fe ratios

    Get PDF
    Measurements of explosive nucleosynthesis yields in core-collapse supernovae provide tests for explosion models. We investigate constraints on explosive conditions derivable from measured amounts of nickel and iron after radioactive decays using nucleosynthesis networks with parameterized thermodynamic trajectories. The Ni/Fe ratio is for most regimes dominated by the production ratio of 58Ni/(54Fe + 56Ni), which tends to grow with higher neutron excess and with higher entropy. For SN 2012ec, a supernova that produced a Ni/Fe ratio of 3.4±1.23.4\pm1.2 times solar, we find that burning of a fuel with neutron excess η6×103\eta \approx 6\times 10^{-3} is required. Unless the progenitor metallicity is over 5 times solar, the only layer in the progenitor with such a neutron excess is the silicon shell. Supernovae producing large amounts of stable nickel thus suggest that this deep-lying layer can be, at least partially, ejected in the explosion. We find that common spherically symmetric models of MZAMS13M_{\rm ZAMS} \lesssim 13 Msun stars exploding with a delay time of less than one second (Mcut<1.5M_{\rm cut} < 1.5 Msun) are able to achieve such silicon-shell ejection. Supernovae that produce solar or sub-solar Ni/Fe ratios, such as SN 1987A, must instead have burnt and ejected only oxygen-shell material, which allows a lower limit to the mass cut to be set. Finally, we find that the extreme Ni/Fe value of 60-75 times solar derived for the Crab cannot be reproduced by any realistic-entropy burning outside the iron core, and neutrino-neutronization obtained in electron-capture models remains the only viable explanation.Comment: 13 pages, 9 figures, accepted for publication in Ap
    corecore