84 research outputs found

    Segmentation of networks from VHR remote sensing images using a directed phase field HOAC model.

    Get PDF
    We propose a new algorithm for network segmentation from very high resolution (VHR) remote sensing images. The algorithm performs this task quasi-automatically, that is, with no human intervention except to fix some parameters. The task is made difficult by the amount of prior knowledge about network region geometry needed to perform the task, knowledge that is usually provided by a human being. To include such prior knowledge, we make use of methodological advances in region modelling: a phase field higher-order active contour of directed networks is used as the prior model for region geometry. By adjoining an approximately conserved flow to a phase field model encouraging network shapes (i.e. regions composed of branches meeting at junctions), the model favours network regions in which different branches may have very different widths, but in which width change along a branch is slow; in which branches do not come to an end, hence tending to close gaps in the network; and in which junctions show approximate 'conservation of width'. We also introduce image models for network and background, which are validated using maximum likelihood segmentation against other possibilities. We then test the full model on VHR optical and multispectral satellite images

    Leaving the sandbox : third party validation for Java applications.

    Get PDF

    Extraction of main and secondary roads in VHR images using a higher-order phase field model.

    Get PDF
    This paper addresses the issue of extracting main and secondary road networks in dense urban areas from very high resolution (VHR, ~0.61m) satellite images. The difficulty with secondary roads lies in the low discriminative power of the grey-level distributions of road regions and the background, and the greater effect of occlusions and other noise on narrower roads. To tackle this problem, we use a previously developed higher-order active contour (HOAC) phase field model and augment it with an additional non-linear non-local term. The additional term allows separate control of road width and road curvature; thus more precise prior knowledge can be incorporated, and better road prolongation can be achieved for the same width. Promising results on QuickBird panchromatic images at reduced resolutions and comparisons with other models demonstrate the role and the efficiency of our new model

    Computing statistics from a graph representation of road networks in satellite images for indexing and retrieval.

    Get PDF
    Retrieval from remote sensing image archives relies on the extraction of pertinent information from the data about the entity of interest (e.g. land cover type), and on the robustness of this extraction to nuisance variables (e.g. illumination). Most image-based characterizations are not invariant to such variables. However, other semantic entities in the image may be strongly correlated with the entity of interest and their properties can therefore be used to characterize this entity. Road networks are one example: their properties vary considerably, for example, from urban to rural areas. This paper takes the first steps towards classification (and hence retrieval) based on this idea. We study the dependence of a number of network features on the class of the image ('urban' or 'rural'). The chosen features include measures of the network density, connectedness, and 'curviness'. The feature distributions of the two classes are well separated in feature space, thus providing a basis for retrieval. Classification using kernel k-means confirms this conclusion

    Indexing of mid-resolution satellite images with structural attributes.

    Get PDF
    Satellite image classification has been a major research field for many years with its varied applications in the field of Geography, Geology, Archaeology, Environmental Sciences and Military purposes. Many different techniques have been proposed to classify satellite images with color, shape and texture features. Complex indices like Vegetation index (NDVI), Brightness index (BI) or Urban index (ISU) are used for multi-spectral or hyper-spectral satellite images. In this paper we will show the efficiency of structural features describing man-made objects in mid-resolution satellite images to describe image content. We will then show the state-of-the-art to classify large satellite images with structural features computed from road networks and urban regions extracted on small image patches cut in the large image. Fisher Linear Discriminant (FLD) analysis is used for feature selection and a one-vsrest probabilistic Gaussian kernel Support Vector Machines (SVM) classification method is used to classify the images. The classification probabilities associated with each subimage of the large image provide an estimate of the geographical class coverage

    A phase field model incorporating generic and specific prior knowledge applied to road network extraction from VHR satellite images.

    Get PDF
    We address the problem of updating road maps in dense urban areas by extracting the main road network from a very high resolution (VHR) satellite image. Our model of the region occupied by the road network in the image is innovative. It incorporates three different types of prior geometric knowledge: generic boundary smoothness constraints, equivalent to a standard active contour prior; knowledge of the geometric properties of road networks (i.e. that they occupy regions composed of long, low-curvature segments joined at junctions), equivalent to a higher-order active contour prior; and knowledge of the road network at an earlier date derived from GIS data, similar to other ‘shape priors’ in the literature. In addition, we represent the road network region as a ‘phase field’, which offers a number of important advantages over other region modelling frameworks. All three types of prior knowledge prove important for overcoming the complexity of geometric ‘noise’ in VHR images. Promising results and a comparison with several other techniques demonstrate the effectiveness of our approach

    A marked point process model with strong prior shape information for extraction of multiple, arbitrarily-shaped objects.

    Get PDF
    We define a method for incorporating strong prior shape information into a recently extended Markov point process model for the extraction of arbitrarily-shaped objects from images. To estimate the optimal configuration of objects, the process is sampled using a Markov chain based on a stochastic birth-and-death process defined in a space of multiple objects. The single objects considered are defined by both the image data and the prior information in a way that controls the computational complexity of the estimation problem. The method is tested via experiments on a very high resolution aerial image of a scene composed of tree crowns

    Extraction of arbitrarily shaped objects using stochastic multiple birth-and-death dynamics and active contours.

    Get PDF
    We extend the marked point process models that have been used for object extraction from images to arbitrarily shaped objects, without greatly increasing the computational complexity of sampling and estimation. The approach can be viewed as an extension of the active contour methodology to an a priori unknown number of objects. Sampling and estimation are based on a stochastic birth-and-death process defined in a space of multiple, arbitrarily shaped objects, where the objects are defined by the image data and prior information. The performance of the approach is demonstrated via experimental results on synthetic and real data

    Globally optimal regions and boundaries

    Get PDF
    We propose a new form of energy functional for the segmentation of regions in images, and an efficient method for finding its global optima. The energy can have contributions from both the region and its boundary, thus combining the best features of region- and boundary-based approaches to segmentation. By transforming the region energy into a boundary energy, we can treat both contributions on an equal footing, and solve the global optimization problem as a minimum mean weight cycle problem on a directed graph. The simple, polynomial-time algorithm requires no initialization and is highly parallelizabl

    A Bayesian multi-region radial composite reservoir model for deconvolution in well test analysis

    Get PDF
    In petroleum well test analysis, deconvolution is used to obtain information about the reservoir system. This information is contained in the response function, which can be estimated by solving an inverse problem in the pressure and flow rate measurements. Our Bayesian approach to this problem is based upon a parametric physical model of reservoir behaviour, derived from the solution for fluid flow in a general class of reservoirs. This permits joint parametric Bayesian inference for both the reservoir parameters and the true pressure and rate values, which is essential due to the typical levels of observation error. Using a set of flexible priors for the reservoir parameters to restrict the solution space to physical behaviours, samples from the posterior are generated using MCMC. Summaries and visualisations of the reservoir parameters' posterior, response, and true pressure and rate values can be produced, interpreted, and model selection can be performed. The method is validated through a synthetic application, and applied to a field data set. The results are comparable to the state of the art solution, but through our method we gain access to system parameters, we can incorporate prior knowledge that excludes non-physical results, and we can quantify parameter uncertainty
    corecore