36 research outputs found

    HIV-1 Virological Synapse: Live Imaging of Transmission

    Get PDF
    A relatively new aspect of HIV-1 biology is the ability of the virus to infect cells by direct cellular contacts across a specialized structure, the virological synapse. This process was recently described through live cell imaging. Together with the accumulated knowledge on cellular and molecular structures involved in cell-to-cell transmission of HIV-1, the visualization of the virological synapse in video-microscopy has brought exciting new hypotheses on its underlying mechanisms. This review will recapitulate current knowledge with a particular emphasis on the questions live microscopy has raised

    Tetherin Restricts Productive HIV-1 Cell-to-Cell Transmission

    Get PDF
    The IFN-inducible antiviral protein tetherin (or BST-2/CD317/HM1.24) impairs release of mature HIV-1 particles from infected cells. HIV-1 Vpu antagonizes the effect of tetherin. The fate of virions trapped at the cell surface remains poorly understood. Here, we asked whether tetherin impairs HIV cell-to-cell transmission, a major means of viral spread. Tetherin-positive or -negative cells, infected with wild-type or ΔVpu HIV, were used as donor cells and cocultivated with target lymphocytes. We show that tetherin inhibits productive cell-to-cell transmission of ΔVpu to targets and impairs that of WT HIV. Tetherin accumulates with Gag at the contact zone between infected and target cells, but does not prevent the formation of virological synapses. In the presence of tetherin, viruses are then mostly transferred to targets as abnormally large patches. These viral aggregates do not efficiently promote infection after transfer, because they accumulate at the surface of target cells and are impaired in their fusion capacities. Tetherin, by imprinting virions in donor cells, is the first example of a surface restriction factor limiting viral cell-to-cell spread

    Goblet Cell Hyperplasia Increases SARS-CoV-2 Infection in Chronic Obstructive Pulmonary Disease

    Full text link
    SARS-CoV-2 or COVID-19’s first case was discovered in December 2019 in Wuhan, China, and by March 2020 it was declared a pandemic by the WHO. It has been shown that various underlying conditions can increase the chance of having severe COVID-19.</jats:p

    Goblet Cell Hyperplasia Increases SARS-CoV-2 Infection in COPD

    Full text link
    SummarySARS-CoV-2 has become a major problem across the globe, with approximately 50 million cases and more than 1 million deaths and currently no approved treatment or vaccine. Chronic obstructive pulmonary disease (COPD) is one of the underlying conditions in adults of any age that place them at risk for developing severe illness associated with COVID-19. We established an airway epithelium model to study SARS-CoV-2 infection in healthy and COPD lung cells. We found that both the entry receptor ACE2 and the co-factor transmembrane protease TMPRSS2 are expressed at higher levels on nonciliated goblet cell, a novel target for SARS-CoV-2 infection. We observed that SARS-CoV-2 infected goblet cells and induced syncytium formation and cell sloughing. We also found that SARS-CoV-2 replication was increased in the COPD airway epithelium likely due to COPD associated goblet cell hyperplasia. Our results reveal goblet cells play a critical role in SARS-CoV-2 infection in the lung.</jats:p

    Sedimentology of a hypertidal point bar (Mont‐Saint‐Michel Bay, north‐western France) revealed by combining lidar time‐series and sedimentary core data

    No full text
    International audienceIntertidal meanders developed on salt marshes are known to expand and produce inclined heterolithic stratification rich in fine-grained sediments and to bear evidence for rhythmic deposition in the upper part of the inner meander bend(i.e. the upper part of the point bar). This occurs because the lower point-bar deposits are washed by strong currents, which remove mud drapes and develop discontinuous record of tidal cycles. Although these criteria are widely accepted, facies models for tidal point bars still lack a three-dimensional perspective and overlook the along-bend variability of sediment distribution. The present study focuses on a hypertidal point bar belonging to the upper-intertidal domain of the Mont-Saint-Michel Bay (France), and it analyses the sedimentology of a 3D time-framed accretionary package formed between 28 March 2012 and 29 November 2012 by means of lidar topographic data, geomorphological field surveys and sedimentological core data. To define the 3D time-framed accretionary package, data from thirteen lidar topographic surveys were used to create the point-bar synthetic stratigraphy. Data shows that over the study period the point bar expanded alternating deposition along its seaward and landward sides, pointing out the occurrence of depositional patterns more complex than a simple progressive expansion of the bend. The thickest deposits were accumulated in the point-bar-apex zone, where the largest amount of mud was also stored. High sediment accretion in the bend-apex zone is ascribed to the development of low-energy conditions due to flow and bed configuration. High accretion rate of the point-bar-apex zone promoted also a better preservation of rhythmites, which are almost missing from deposits accumulated along the point-bar sides. This study remarks that preservation of mud and tidal rhythmites within intertidal-point-bar deposits is controlled, not only by their elevation with respect to the tidal range, but also by their location along the point bar

    Nuclear translocation of spike mRNA and protein is a novel feature of SARS-CoV-2

    No full text
    Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes severe pathophysiology in vulnerable older populations and appears to be highly pathogenic and more transmissible than other coronaviruses. The spike (S) protein appears to be a major pathogenic factor that contributes to the unique pathogenesis of SARS-CoV-2. Although the S protein is a surface transmembrane type 1 glycoprotein, it has been predicted to be translocated into the nucleus due to the novel nuclear localization signal (NLS) “PRRARSV,” which is absent from the S protein of other coronaviruses. Indeed, S proteins translocate into the nucleus in SARS-CoV-2-infected cells. S mRNAs also translocate into the nucleus. S mRNA colocalizes with S protein, aiding the nuclear translocation of S mRNA. While nuclear translocation of nucleoprotein (N) has been shown in many coronaviruses, the nuclear translocation of both S mRNA and S protein reveals a novel feature of SARS-CoV-2.</jats:p

    Biochemical and functional characterization of Rab27a mutations occurring in Griscelli syndrome patients

    No full text
    International audienceRab27a is a member of the Rab family of small GTPase proteins, and thus far is the first member to be associated with a human disease (ie, the Griscelli syndrome type 2). Mutations in the Rab27a gene cause pigment as well as cytotoxic granule transport defects, accounting for the partial albinism and severe immune disorder characteristics of this syndrome. So far, 3 Rab27a missense mutations have been identified. They open a unique opportunity to designate critical structural and functional residues of Rab proteins. We show here that the introduction of a proline residue in the alpha 4 (Ala152Pro) or beta 5 (Leu130Pro) loop, observed in 2 of these spontaneous mutants, dramatically affects both guanosine triphosphate (GTP) and guanosine diphosphate (GDP) nucleotide-binding activity of Rab27a, probably by disrupting protein folding. The third mutant, Trp73Gly, is located within an invariant hydrophobic triad at the switch interface, and was previously shown in active Rab3A to mediate rabphilin3A effector interaction. Trp73Gly is shown to display the same nucleotide-binding and GTPase characteristics as the constitutively active mutant Gln78Leu. However, in contrast to Gln78Leu, Trp73Gly mutant construct neither interacts with the Rab27a effector melanophilin nor modifies melanosome distribution and cytotoxic granule exocytosis. Substitutions introduced at the 73 position, including the leucine residue present in Ras, did not restore Rab27a protein functions. Taken together, our results characterize new critical residues of Rab proteins, and identify the Trp73 residue of Rab27a as a key position for interaction with the specific effectors of Rab27a, both in melanocytes and cytotoxic cells

    Image_3_Nuclear translocation of spike mRNA and protein is a novel feature of SARS-CoV-2.TIFF

    No full text
    Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes severe pathophysiology in vulnerable older populations and appears to be highly pathogenic and more transmissible than other coronaviruses. The spike (S) protein appears to be a major pathogenic factor that contributes to the unique pathogenesis of SARS-CoV-2. Although the S protein is a surface transmembrane type 1 glycoprotein, it has been predicted to be translocated into the nucleus due to the novel nuclear localization signal (NLS) “PRRARSV,” which is absent from the S protein of other coronaviruses. Indeed, S proteins translocate into the nucleus in SARS-CoV-2-infected cells. S mRNAs also translocate into the nucleus. S mRNA colocalizes with S protein, aiding the nuclear translocation of S mRNA. While nuclear translocation of nucleoprotein (N) has been shown in many coronaviruses, the nuclear translocation of both S mRNA and S protein reveals a novel feature of SARS-CoV-2.</p

    Image_8_Nuclear translocation of spike mRNA and protein is a novel feature of SARS-CoV-2.TIFF

    No full text
    Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes severe pathophysiology in vulnerable older populations and appears to be highly pathogenic and more transmissible than other coronaviruses. The spike (S) protein appears to be a major pathogenic factor that contributes to the unique pathogenesis of SARS-CoV-2. Although the S protein is a surface transmembrane type 1 glycoprotein, it has been predicted to be translocated into the nucleus due to the novel nuclear localization signal (NLS) “PRRARSV,” which is absent from the S protein of other coronaviruses. Indeed, S proteins translocate into the nucleus in SARS-CoV-2-infected cells. S mRNAs also translocate into the nucleus. S mRNA colocalizes with S protein, aiding the nuclear translocation of S mRNA. While nuclear translocation of nucleoprotein (N) has been shown in many coronaviruses, the nuclear translocation of both S mRNA and S protein reveals a novel feature of SARS-CoV-2.</p

    Image_1_Nuclear translocation of spike mRNA and protein is a novel feature of SARS-CoV-2.TIFF

    No full text
    Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes severe pathophysiology in vulnerable older populations and appears to be highly pathogenic and more transmissible than other coronaviruses. The spike (S) protein appears to be a major pathogenic factor that contributes to the unique pathogenesis of SARS-CoV-2. Although the S protein is a surface transmembrane type 1 glycoprotein, it has been predicted to be translocated into the nucleus due to the novel nuclear localization signal (NLS) “PRRARSV,” which is absent from the S protein of other coronaviruses. Indeed, S proteins translocate into the nucleus in SARS-CoV-2-infected cells. S mRNAs also translocate into the nucleus. S mRNA colocalizes with S protein, aiding the nuclear translocation of S mRNA. While nuclear translocation of nucleoprotein (N) has been shown in many coronaviruses, the nuclear translocation of both S mRNA and S protein reveals a novel feature of SARS-CoV-2.</p
    corecore