2,973 research outputs found
Why Do Companies Pay Dividends?
This paper presents a simple model of market equilibrium to explain why firms that maximize the value of their shares pay dividends even though the funds could instead be retained and subsequently distributed to shareholders in a way that would allow them to be taxed more favorably as capital gains. The two principal ingredients of our explanation are:(1) the conflicting preferences of shareholders in different tax brackets and (2) the shareholders' desire for portfolio diversification, we show that companies will pay a positive fraction of earnings in dividends. We also provide some comparative static analysis of dividend behavior with respect to tax parameters and to the conditions determining the riskiness of the securities.
Recommended from our members
Why Do Companies Pay Dividends?
This paper presents a simple model of market equilibrium
to explain why firms that maximize the value of their shares pay dividends even though the funds could instead be retained and subsequently distributed to shareholders in a way that would allow them to be taxed more favorably as capital gains. The two principal ingredients of our explanation are: (1) the conflicting
preferences of shareholders in different tax brackets
and (2) the shareholders' desire for portfolio diversification, we show that companies will pay a positive fraction of earnings in dividends. We also provide some comparative static analysis of dividend behavior with respect to tax parameters and to the
conditions determining the riskiness of the securities.Economic
Two Heat-Transfer Improvements for Gas Liquefiers
Two improvements in heat-transfer design have been investigated with a view toward increasing the efficiency of refrigerators used to liquefy gases. The improvements could contribute to the development of relatively inexpensive, portable oxygen liquefiers for medical use. A description of the heat-transfer problem in a pulse-tube refrigerator is prerequisite to a meaningful description of the first improvement. In a pulse-tube refrigerator in particular, one of in-line configuration heat must be rejected from two locations: an aftercooler (where most of the heat is rejected) and a warm heat exchanger (where a small fraction of the total input power must be rejected as heat). Rejection of heat from the warm heat exchanger can be problematic because this heat exchanger is usually inside a vacuum vessel. When an acoustic-inertance tube is used to provide a phase shift needed in the pulse-tube cooling cycle, another problem arises: Inasmuch as the acoustic power in the acoustic-inertance tube is dissipated over the entire length of the tube, the gas in the tube must be warmer than the warm heat exchanger in order to reject heat at the warm heat exchanger. This is disadvantageous because the increase in viscosity with temperature causes an undesired increase in dissipation of acoustic energy and an undesired decrease in the achievable phase shift. Consequently, the overall performance of the pulse-tube refrigerator decreases with increasing temperature in the acoustic-inertance tube. In the first improvement, the acoustic-inertance tube is made to serve as the warm heat exchanger and to operate in an approximately isothermal condition at a lower temperature, thereby increasing the achievable phase shift and the overall performance of the refrigerator. This is accomplished by placing the acoustic-inertance tube inside another tube and pumping a cooling fluid (e.g., water) in the annular space between the tubes. Another benefit of this improvement is added flexibility of design to locate the warm heat-rejection components outside the vacuum vessel. The second improvement is the development of a compact radial-flow condenser characterized by a very high heat transfer coefficient and a small pressure drop
Recommended from our members
Corporate Financial Policy and Taxation in a Growing Economy
Economic
High-resolution broadband spectroscopy using externally dispersed interferometry at the Hale telescope: part 2, photon noise theory
High-resolution broadband spectroscopy at near-infrared (NIR) wavelengths (950 to 2450 nm) has been performed using externally dispersed interferometry (EDI) at the Hale telescope at Mt. Palomar, with the TEDI interferometer mounted within the central hole of the 200-in. primary mirror in series with the comounted TripleSpec NIR echelle spectrograph. These are the first multidelay EDI demonstrations on starlight. We demonstrated very high (10×) resolution boost and dramatic (20× or more) robustness to point spread function wavelength drifts in the native spectrograph. Data analysis, results, and instrument noise are described in a companion paper (part 1). This part 2 describes theoretical photon limited and readout noise limited behaviors, using simulated spectra and instrument model with noise added at the detector. We show that a single interferometer delay can be used to reduce the high frequency noise at the original resolution (1× boost case), and that except for delays much smaller than the native response peak half width, the fringing and nonfringing noises act uncorrelated and add in quadrature. This is due to the frequency shifting of the noise due to the heterodyning effect. We find a sum rule for the noise variance for multiple delays. The multiple delay EDI using a Gaussian distribution of exposure times has noise-to-signal ratio for photon-limited noise similar to a classical spectrograph with reduced slitwidth and reduced flux, proportional to the square root of resolution boost achieved, but without the focal spot limitation and pixel spacing Nyquist limitations. At low boost (∼1×) EDI has ∼1.4× smaller noise than conventional, and at >10× boost, EDI has ∼1.4× larger noise than conventional. Readout noise is minimized by the use of three or four steps instead of 10 of TEDI. Net noise grows as step phases change from symmetrical arrangement with wavenumber across the band. For three (or four) steps, we calculate a multiplicative bandwidth of 1.8:1 (2.3:1), sufficient to handle the visible band (400 to 700 nm, 1.8:1) and most of TripleSpec (2.6:1)
Use of foot for direct interactions with entities of a virtual environment displayed on a mobile device
With this paper, we report a novel wearable in-terface dedicated to provide new types of 3D interactions with mobile devices. Proposed interface is based on the fact that the foot can be exploited in the interaction with a virtual 3D world. By using several force sensors incorporated in the sole and an accelerometer attached to the shoe; gestures performed with the foot are interpreted in order to let the user interact with a 3D virtual environment. Being located inside a shoe this interface is
fully compatible to constraints related to mobile devices. Indeed as a wearable and transparent device it can be carried everywhere and therefore can be exploited everywhere
- …
