29 research outputs found
Mudanças no desenvolvimento temporal da força em mulheres de diferentes faixas etárias
Discharge properties of motor units during steady isometric contractions performed with the dorsiflexor muscles.
The purpose of this study was to record the discharge characteristics of tibialis anterior motor units over a range of target forces and to import these data, along with previously reported observations, into a computational model to compare experimental and simulated measures of torque variability during isometric contractions with the dorsiflexor muscles. The discharge characteristics of 44 motor units were quantified during brief isometric contractions at torques that ranged from recruitment threshold to an average of 22 ± 14.4% maximal voluntary contraction (MVC) torque above recruitment threshold. The minimal [range: 5.8-19.8 pulses per second (pps)] and peak (range: 8.6-37.5 pps) discharge rates of motor units were positively related to the recruitment threshold torque (R(2) ≥ 0.266; P < 0.001). The coefficient of variation for interspike interval at recruitment was positively associated with recruitment threshold torque (R(2) = 0.443; P < 0.001) and either decreased exponentially or remained constant as target torque increased above recruitment threshold torque. The variability in the simulated torque did not differ from the experimental values once the recruitment range was set to ∼85% MVC torque, and the association between motor twitch contraction times and peak twitch torque was defined as a weak linear association (R(2) = 0.096; P < 0.001). These results indicate that the steadiness of isometric contractions performed with the dorsiflexor muscle depended more on the distributions of mechanical properties than discharge properties across the population of motor units in the tibialis anterior.Journal ArticleResearch Support, Non-U.S. Gov'tSCOPUS: ar.jinfo:eu-repo/semantics/publishe
Changes in muscle fascicles of tibialis anterior during anisometric contractions are not associated with motor-output variability of the ankle dorsiflexors in young and old adults
Across-Muscle Coherence Is Modulated As A Function Of Wrist Posture During Two-Digit Grasping
The purpose of this study was to investigate the extent to which correlated neural inputs, quantified as EMG-EMG coherence across intrinsic and extrinsic hand muscles, varied as a function of wrist angle during a constant force precision grip task. Eight adults (5 males; mean age 29 years) participated in the experiment. Subjects held an object using a two-digit precision grip at a constant force at a flexed, neutral, and extended wrist posture, while the EMG activity from intrinsic and extrinsic hand muscles was recorded through intramuscular fine-wire electrodes. The integral of z-transformed coherence computed across muscles pairs was greatest in the flexed wrist posture and significantly greater than EMG-EMG coherence measured in the neutral and extended wrist posture (. P\u3c. 0.01 and 0.05, respectively). Furthermore, EMG-EMG coherence did not differ statistically between the extrinsic and intrinsic muscle pairs, even though it tended to be greater for the extrinsic muscle pair (. P≥. 0.063). These findings lend support to the notion of a functional role of correlated neural inputs to hand muscles for the task-dependent coordination of hand muscle activity that is likely mediated by somatosensory feedback. © 2013
Rate coding is compressed but variability is unaltered for motor units in a hand muscle of old adults
The discharge of single motor units (n = 34) in the first dorsal interosseus muscle and the fluctuations in force during steady contractions were measured across a range of index finger abduction forces in old adults (77.1 +/- 6.9 yr, n = 20). These results were compared with previously reported data on 38 motor units from young adults (25.7 +/- 5.7 yr). Both minimal and peak discharge rates increased with recruitment threshold, but the strength of these relations was notably weaker for the old adults. Minimal discharge rates were similar for young and old adults (P = 0.77), whereas peak discharge rates were lower for old adults (P < 0.01). Consequently, the range of rate coding for each motor unit was substantially less for the old adults (7.1 pps) compared with the young adults (12.1 pps, P < 0.01). However, the variability in motor-unit discharge was similar for young and old adults; the coefficient of variation of the interspike intervals was similar at recruitment (old: 25.4%, young: 27.1%, P = 0.39) and declined with an increase in discharge rate (old: 13.2%, young: 14.2%, P = 0.21). Furthermore, the fluctuations in force during steady isometric contractions (2-95% of maximal force) were similar for young and old adults, except that the relative variability at the lowest force was greater for the old adults. A computational model of motor-unit recruitment and rate coding incorporated the experimental observations and was able to match the measured and simulated values for force steadiness across the operating range of the muscle
A Subject-Independent Method for Automatically Grading Electromyographic Features During a Fatiguing Contraction
Force-Independent Distribution of Correlated Neural Inputs to Hand Muscles During Three-Digit Grasping
The ability to modulate digit forces during grasping relies on the coordination of multiple hand muscles. Because many muscles innervate each digit, the CNS can potentially choose from a large number of muscle coordination patterns to generate a given digit force. Studies of single-digit force production tasks have revealed that the electromyographic (EMG) activity scales uniformly across all muscles as a function of digit force. However, the extent to which this finding applies to the coordination of forces across multiple digits is unknown. We addressed this question by asking subjects (n = 8) to exert isometric forces using a three-digit grip (thumb, index, and middle fingers) that allowed for the quantification of hand muscle coordination within and across digits as a function of grasp force (5, 20, 40, 60, and 80% maximal voluntary force). We recorded EMG from 12 muscles (6 extrinsic and 6 intrinsic) of the three digits. Hand muscle coordination patterns were quantified in the amplitude and frequency domains (EMG–EMG coherence). EMG amplitude scaled uniformly across all hand muscles as a function of grasp force (muscle × force interaction: P = 0.997; cosines of angle between muscle activation pattern vector pairs: 0.897–0.997). Similarly, EMG–EMG coherence was not significantly affected by force (P = 0.324). However, coherence was stronger across extrinsic than that across intrinsic muscle pairs (P = 0.0039). These findings indicate that the distribution of neural drive to multiple hand muscles is force independent and may reflect the anatomical properties or functional roles of hand muscle groups
Rate Coding Is Compressed But Variability Is Unaltered for Motor Units in a Hand Muscle of Old Adults
Recruitment and derecruitment characteristics of motor units in a hand muscle of young and old adults
The significant decline in motor neuron number after ∼60 yr of age is accompanied by a remodeling of the neuromuscular system so that average motor unit force increases and the ability of old adults to produce an intended force declines. One possible explanation for the loss of movement precision is that the remodeling increases the difference in recruitment forces between successively recruited motor units in old adults and this augments force variability at motor unit recruitment. The purpose of the study was to compare the forces and discharge characteristics of motor units in a hand muscle of young and old adults at motor unit recruitment and derecruitment. The difference in recruitment force between pairs of motor units did not differ between young (n = 54) and old adults (n = 56; P = 0.702). However, old adults had a greater proportion of contractions in which motor units discharged action potentials transiently before discharging continuously during the ramp increase in force (young: 0.32; old: 0.41; P = 0.045). Force variability at motor unit recruitment was greater for old adults compared with young adults (P ≤ 0.010), but discharge rate and discharge variability did not differ between age groups (P ≥ 0.729). These results suggest that the difference in force between the recruitment of successive motor units does not differ between age groups, but that motor unit recruitment may be more transient and could contribute to the greater variability in force observed in old adults during graded ramp contractions
