1,021 research outputs found

    Dynamic decoherence control of a solid-state nuclear-quadrupole qubit

    Get PDF
    We report on the application of a dynamic decoherence control pulse sequence on a nuclear-quadrupole transition in Pr3+∶Y2SiO5. Process tomography is used to analyze the effect of the pulse sequence. The pulse sequence was found to increase the decoherence time of the transition to over 30 seconds. Although the decoherence time was significantly increased, the population terms were found to rapidly decay on the application of the pulse sequence. The increase of this decay rate is attributed to inhomogeneity in the ensemble. Methods to circumvent this limit are discussed

    Photon echo without a free induction decay in a double-Lambda system

    Full text link
    We have characterized a novel photon-echo pulse sequence for a double-Λ\Lambda type energy level system where the input and rephasing transitions are different to the applied π\pi-pulses. We show that despite having imperfect π\pi-pulses (associated with large coherent emission due to free induction decay), the noise added is only 0.019±\pm0.001 relative to the shot noise in the spectral mode of the echo. Using this echo pulse sequence in the `rephased amplified spontaneous emission' (RASE) scheme \cite{Ledingham2010} will allow for generation of entangled photon pairs that are in different frequency, temporal, and potentially spatial modes to any bright driving fields. The coherence and efficiency properties of this sequence were characterized in a Pr:YSO crystal

    Long spin coherence times in the ground state and an optically excited state of 167^{167}Er3+^{3+}:Y2_2SiO5_5 at zero magnetic field

    Full text link
    Spins in solids are an ideal candidate to act as a memory and interface with superconducting qubits due to their long coherence times. We spectroscopically investigate erbium-167-doped yttrium orthosilicate as a possible microwave-addressed memory employing its microwave frequency transitions that occur without applying an external magnetic field. We obtain coherence times of 380 μ\mus in a ground state spin transition and 1.48 ms in an excited state spin transition. This is 28 times longer compared to previous zero field measurements, as well as 200 times longer than a previous microwave memory demonstration in the same material. These long coherence times show that erbium-167-doped yttrium orthosilicate has potential as a microwave-addressed quantum memory.Comment: 9 pages, 7 figures. The paper has been expanded compared to the previous version on arXiv, and the title has change
    corecore