142 research outputs found
Three-layered electro-osmosis modulated blood flow through a micro-channel
Electrokinetic peristaltic multi-layered transport is considered in a micro-channel under the action of an axial electrical field. Three different layers i.e. the core layer, intermediate layer and peripheral layer are simulated with three different viscosities for each fluid layer. The unsteady two-dimensional conservation equations for mass and momentum with electrokinetic body forces, are transformed from the wave frame to the laboratory frame and the electrical field terms are rendered into electrical potential terms via the Poisson-Boltzmann equation, Debye length approximation and ionic Nernst Planck equation. The dimensionless emerging linearized electrokinetic boundary value problem is solved using integral methods. Closed-form expressions are derived for stream functions in the core, intermediate and peripheral layers. Expressions are also derived for the core-intermediate interface shape and the intermediate-peripheral interface shape. Maximum pressures are also computed. To study bolus migration, the range of the trapping limit is also determined in the peripheral layer. It is found that in the core layer larger boluses are computed in the case of lower intermediate layer viscosity relative to peripheral layer viscosity although the number of boluses is greater when the intermediate layer viscosity exceeds the peripheral layer viscosity. Furthermore, in the intermediate layer, stronger concentration of streamlines is computed in the lower half space with positive Helmholtz-Smoluchowski velocity. Also, negative Helmholtz-Smoluchowski velocity reduces the core layer (H1) interface shape whereas it enhances the peripheral layer (H) and intermediate layer (H2) shapes. At lower values of volume flow rate ratio, hydromechanical efficiency is maximum for positive Helmholtz-Smoluchowski velocity whether intermediate layer viscosity is less or greater than peripheral layer viscosity. Finally, greater with greater peristaltic wave amplitude and also for positive Helmholtz-Smoluchowski velocity there is an increase in time-averaged flow rate, whether intermediate layer viscosity is less or greater than peripheral layer viscosity. The analysis is relevant to electro-kinetic hemodynamics and bio-micro-fluidics
Performance evaluation of Border irrigation method for cotton field
Performance evaluation of Border irrigation method was carried out for cotton field in village Kirarkot, Sirsa (Haryana). Water application, storage and distribution efficiency were estimated using measurements of soil moisture (%), infiltration rate (cm/hr), water advance and recession time (minute) during different irrigation events. The advance time increased during the growing season due to increased infiltration rate and increased resistance to flow by the growing crops. The water application efficiency of cotton field was 100 per cent as average applied depth (8.26 cm for canal irrigation and 9.06 cm for tubewell irrigation) of irrigation was less than the average required depth (10.30 cm for canal irrigation and 10.98 cm for tubewell irrigation) throughout the field plots. The observed water storage efficiency in different cotton fields varied from 72.92 - 90.08 per cent indicating under irrigation. Water distribution efficiency of cotton fields (97.8 -99.2per cent) indicated a relatively high degree of uniformity of water application. Stratified soil profile (sandy loam: 0-30 cm and sandy clay loam: 30-120 cm) of the selected fields reduced the infiltration rate to relatively very low value after 10-15 minutes creating favourable condition for uniformity of water application under border irrigation
Inheritance of determinate growth habit in fenugreek (Trigonella foenum-graecum L.)
Inheritance of determinate growth habit in fenugreek (Trigonella foenum-graecum L.) was examined in six generations of the reciprocal crosses of HM 350 with NLM and HM 65. All the F1 plants had indeterminate growth habit in both the crosses. In F2, segregation was observed in 3 : 1 ratio for indeterminate and detenninate plant types revealing that determinate habit was under the control of a single recessive gene. The results were further confirmed by observing 1 : 1 ratio in back crosses involving HM 350 as one of the parents.
 
Recommended from our members
An easily implemented agro-hydrological procedure with dynamic root simulation for water transfer in the crop–soil system: validation and application
Models for water transfer in the crop–soil system are key components of agro-hydrological models for irrigation, fertilizer and pesticide practices. Many of the hydrological models for water transfer in the crop–soil system are either too approximate due to oversimplified algorithms or employ complex numerical schemes. In this paper we developed a simple and sufficiently accurate algorithm which can be easily adopted in agro-hydrological models for the simulation of water dynamics. We used a dual crop coefficient approach proposed by the FAO for estimating potential evaporation and transpiration, and a dynamic model for calculating relative root length distribution on a daily basis. In a small time step of 0.001 d, we implemented algorithms separately for actual evaporation, root water uptake and soil water content redistribution by decoupling these processes. The Richards equation describing soil water movement was solved using an integration strategy over the soil layers instead of complex numerical schemes. This drastically simplified the procedures of modeling soil water and led to much shorter computer codes. The validity of the proposed model was tested against data from field experiments on two contrasting soils cropped with wheat. Good agreement was achieved between measurement and simulation of soil water content in various depths collected at intervals during crop growth. This indicates that the model is satisfactory in simulating water transfer in the crop–soil system, and therefore can reliably be adopted in agro-hydrological models. Finally we demonstrated how the developed model could be used to study the effect of changes in the environment such as lowering the groundwater table caused by the construction of a motorway on crop transpiration
Recommended from our members
Developing a reliable strategy to infer the effective soil hydraulic properties from field evaporation experiments for agro-hydrological models
The Richards equation has been widely used for simulating soil water movement. However, the take-up of agro-hydrological models using the basic theory of soil water flow for optimizing irrigation, fertilizer and pesticide practices is still low. This is partly due to the difficulties in obtaining accurate values for soil hydraulic properties at a field scale. Here, we use an inverse technique to deduce the effective soil hydraulic properties, based on measuring the changes in the distribution of soil water with depth in a fallow field over a long period, subject to natural rainfall and evaporation using a robust micro Genetic Algorithm. A new optimized function was constructed from the soil water contents at different depths, and the soil water at field capacity. The deduced soil water retention curve was approximately parallel but higher than that derived from published pedo-tranfer functions for a given soil pressure head. The water contents calculated from the deduced soil hydraulic properties were in good agreement with the measured values. The reliability of the deduced soil hydraulic properties was tested in reproducing data measured from an independent experiment on the same soil cropped with leek. The calculation of root water uptake took account for both soil water potential and root density distribution. Results show that the predictions of soil water contents at various depths agree fairly well with the measurements, indicating that the inverse analysis is an effective and reliable approach to estimate soil hydraulic properties, and thus permits the simulation of soil water dynamics in both cropped and fallow soils in the field accurately
Yield losses due to powdery mildew disease in fenugreek (Trigonella foenum-graecum L.)
A field experiment was conducted at Hisar during winter (rabi) of 1998-99 and 1999-2000 to assess the reduction in growth and yield parameters of two susceptible fenugreek: (Trigonella foenum-graecum L.) varieties (HM 65 and T 8) due to powdery mildew disease caused by Erysiphe polygoni DC. and Leveillula taurica (Lev.) Arnaud. The disease had no significant effect on plant height and number of branches even at more than 80 per cent disease intensity. However, more than 60 per cent disease intensity significantly reduced the number of pods per plant, number of seeds per pod and test weight. Reductions of 22.8-25.6, 16.2-18.8 and 14.3-17.2 per cent pods per plant, seeds per pod and test weight, respectively were recorded in both the varieties when disease intensity was more than 80 per cent.
 
Inheritance of determinate growth habit in fenugreek (Trigonella foenum-graecum L.)
Inheritance of determinate growth habit in fenugreek (Trigonella foenum-graecum L.) was examined in six generations of the reciprocal crosses of HM 350 with NLM and HM 65. All the F1 plants had indeterminate growth habit in both the crosses. In F2, segregation was observed in 3 : 1 ratio for indeterminate and detenninate plant types revealing that determinate habit was under the control of a single recessive gene. The results were further confirmed by observing 1 : 1 ratio in back crosses involving HM 350 as one of the parents.
 
Electroosmosis modulated peristaltic biorheological flow through an asymmetric microchannel : mathematical model
A theoretical study is presented of peristaltic hydrodynamics of an aqueous electrolytic nonNewtonian Jeffrey bio-rheological fluid through an asymmetric microchannel under an applied axial electric field. An analytical approach is adopted to obtain the closed form solution for velocity, volumetric flow, pressure difference and stream function. The analysis is also restricted under the low Reynolds number assumption and lubrication theory approximations. Debye-Hückel linearization (i.e. wall zeta potential ≤ 25mV) is also considered. Streamline plots are also presented for the different electro-osmotic parameter, varying magnitudes of the electric field (both aiding and opposing cases) and for different values of the ratio of relaxation to retardation time parameter. Comparisons are also included between the Newtonian and general non-Newtonian Jeffrey fluid cases. The results presented here may be of fundamental interest towards designing lab-on-a-chip devices for flow mixing, cell manipulation, micro-scale pumps etc. Trapping is shown to be more sensitive to an electric field (aiding, opposing and neutral) rather than the electro-osmotic parameter and viscoelastic relaxation to retardation ratio parameter. The results may also help towards the design of organ-on-a-chip like devices for better drug design
- …
