2,107 research outputs found

    The CDEX-1 1 kg Point-Contact Germanium Detector for Low Mass Dark Matter Searches

    Full text link
    The CDEX Collaboration has been established for direct detection of light dark matter particles, using ultra-low energy threshold p-type point-contact germanium detectors, in China JinPing underground Laboratory (CJPL). The first 1 kg point-contact germanium detector with a sub-keV energy threshold has been tested in a passive shielding system located in CJPL. The outputs from both the point-contact p+ electrode and the outside n+ electrode make it possible to scan the lower energy range of less than 1 keV and at the same time to detect the higher energy range up to 3 MeV. The outputs from both p+ and n+ electrode may also provide a more powerful method for signal discrimination for dark matter experiment. Some key parameters, including energy resolution, dead time, decay times of internal X-rays, and system stability, have been tested and measured. The results show that the 1 kg point-contact germanium detector, together with its shielding system and electronics, can run smoothly with good performances. This detector system will be deployed for dark matter search experiments.Comment: 6 pages, 8 figure

    Fully gapped topological surface states in Bi2_2Se3_3 films induced by a d-wave high-temperature superconductor

    Full text link
    Topological insulators are a new class of materials, that exhibit robust gapless surface states protected by time-reversal symmetry. The interplay between such symmetry-protected topological surface states and symmetry-broken states (e.g. superconductivity) provides a platform for exploring novel quantum phenomena and new functionalities, such as 1D chiral or helical gapless Majorana fermions, and Majorana zero modes which may find application in fault-tolerant quantum computation. Inducing superconductivity on topological surface states is a prerequisite for their experimental realization. Here by growing high quality topological insulator Bi2_2Se3_3 films on a d-wave superconductor Bi2_2Sr2_2CaCu2_2O8+δ_{8+\delta} using molecular beam epitaxy, we are able to induce high temperature superconductivity on the surface states of Bi2_2Se3_3 films with a large pairing gap up to 15 meV. Interestingly, distinct from the d-wave pairing of Bi2_2Sr2_2CaCu2_2O8+δ_{8+\delta}, the proximity-induced gap on the surface states is nearly isotropic and consistent with predominant s-wave pairing as revealed by angle-resolved photoemission spectroscopy. Our work could provide a critical step toward the realization of the long sought-after Majorana zero modes.Comment: Nature Physics, DOI:10.1038/nphys274

    Search for the Lepton Flavor Violation Process J/ψeμJ/\psi \to e\mu at BESIII

    Get PDF
    We search for the lepton-flavor-violating decay of the J/ψJ/\psi into an electron and a muon using (225.3±2.8)×106(225.3\pm2.8)\times 10^{6} J/ψJ/\psi events collected with the BESIII detector at the BEPCII collider. Four candidate events are found in the signal region, consistent with background expectations. An upper limit on the branching fraction of B(J/ψeμ)<1.5×107\mathcal{B}(J/\psi \to e\mu)< 1.5 \times 10^{-7} (90% C.L.) is obtained

    Observation of J/ψppˉa0(980)J/\psi \rightarrow p\bar{p}a_{0}(980) at BESIII

    Full text link
    Using 2.25×1082.25\times10^{8} J/ψJ/\psi events collected with the BESIII detector at the BEPCII storage rings, we observe for the first time the process J/ψppˉa0(980)J/\psi\rightarrow p\bar{p}a_{0}(980), a0(980)π0ηa_{0}(980)\rightarrow \pi^{0}\eta with a significance of 6.5σ6.5\sigma (3.2σ3.2\sigma including systematic uncertainties). The product branching fraction of J/ψppˉa0(980)ppˉπ0ηJ/\psi\rightarrow p\bar{p}a_{0}(980)\rightarrow p\bar{p}\pi^{0}\eta is measured to be (6.8±1.2±1.3)×105(6.8\pm1.2\pm1.3)\times 10^{-5}, where the first error is statistical and the second is systematic. This measurement provides information on the a0a_{0} production near threshold coupling to ppˉp\bar{p} and improves the understanding of the dynamics of J/ψJ/\psi decays to four body processes.Comment: 8 pages, 7 figure

    First observation of the M1 transition ψ(3686)γηc(2S)\psi(3686)\to \gamma\eta_c(2S)

    Get PDF
    Using a sample of 106 million \psi(3686) events collected with the BESIII detector at the BEPCII storage ring, we have made the first measurement of the M1 transition between the radially excited charmonium S-wave spin-triplet and the radially excited S-wave spin-singlet states: \psi(3686)\to\gamma\eta_c(2S). Analyses of the processes \psi(2S)\to \gamma\eta_c(2S) with \eta_c(2S)\to \K_S^0 K\pi and K^+K^-\pi^0 gave an \eta_c(2S) signal with a statistical significance of greater than 10 standard deviations under a wide range of assumptions about the signal and background properties. The data are used to obtain measurements of the \eta_c(2S) mass (M(\eta_c(2S))=3637.6\pm 2.9_\mathrm{stat}\pm 1.6_\mathrm{sys} MeV/c^2), width (\Gamma(\eta_c(2S))=16.9\pm 6.4_\mathrm{stat}\pm 4.8_\mathrm{sys} MeV), and the product branching fraction (\BR(\psi(3686)\to \gamma\eta_c(2S))\times \BR(\eta_c(2S)\to K\bar K\pi) = (1.30\pm 0.20_\mathrm{stat}\pm 0.30_\mathrm{sys})\times 10^{-5}). Combining our result with a BaBar measurement of \BR(\eta_c(2S)\to K\bar K \pi), we find the branching fraction of the M1 transition to be \BR(\psi(3686)\to\gamma\eta_c(2S)) = (6.8\pm 1.1_\mathrm{stat}\pm 4.5_\mathrm{sys})\times 10^{-4}.Comment: 7 pages, 1 figure, 1 tabl

    Study of J/ψppˉJ/\psi\to p\bar{p} and J/ψnnˉJ/\psi\to n\bar{n}

    Get PDF
    The decays J/ψppˉJ/\psi\to p\bar{p} and J/ψnnˉJ/\psi\to n\bar{n} have been investigated with a sample of 225.2 million J/ψJ/\psi events collected with the BESIII detector at the BEPCII e+ee^+e^- collider. The branching fractions are determined to be B(J/ψppˉ)=(2.112±0.004±0.031)×103\mathcal{B}(J/\psi\to p\bar{p})=(2.112\pm0.004\pm0.031)\times10^{-3} and B(J/ψnnˉ)=(2.07±0.01±0.17)×103\mathcal{B}(J/\psi\to n\bar{n})=(2.07\pm0.01\pm0.17)\times10^{-3}. Distributions of the angle θ\theta between the proton or anti-neutron and the beam direction are well described by the form 1+αcos2θ1+\alpha\cos^2\theta, and we find α=0.595±0.012±0.015\alpha=0.595\pm0.012\pm0.015 for J/ψppˉJ/\psi\to p\bar{p} and α=0.50±0.04±0.21\alpha=0.50\pm0.04\pm0.21 for J/ψnnˉJ/\psi\to n\bar{n}. Our branching-fraction results suggest a large phase angle between the strong and electromagnetic amplitudes describing the J/ψNNˉJ/\psi\to N\bar{N} decay.Comment: 16 pages, 13 figures, the 2nd version, submitted to PR

    Precision measurement of the D0D^{*0} decay branching fractions

    Full text link
    Using 482 pb1^{-1} of data taken at s=4.009\sqrt{s}=4.009 GeV, we measure the branching fractions of the decays of D0D^{*0} into D0π0D^0\pi^0 and D0γD^0\gamma to be \BR(D^{*0} \to D^0\pi^0)=(65.5\pm 0.8\pm 0.5)% and \BR(D^{*0} \to D^0\gamma)=(34.5\pm 0.8\pm 0.5)% respectively, by assuming that the D0D^{*0} decays only into these two modes. The ratio of the two branching fractions is \BR(D^{*0} \to D^0\pi^0)/\BR(D^{*0} \to D^0\gamma) =1.90\pm 0.07\pm 0.05, which is independent of the assumption made above. The first uncertainties are statistical and the second ones systematic. The precision is improved by a factor of three compared to the present world average values

    Measurement of the Matrix Elements for the Decays ηπ+ππ0\eta \rightarrow \pi^{+}\pi^{-}\pi^0 and η/ηπ0π0π0\eta/\eta^{\prime}\rightarrow\pi^0\pi^0\pi^0

    Full text link
    Based on a sample of 1.31×1091.31 \times 10^9 J/ψJ/\psi events collected with the BESIII detector at the BEPCII collider, Dalitz plot analyses of selected 79,625 ηπ+ππ0\eta\rightarrow\pi^{+}\pi^{-}\pi^0 events, 33,908 ηπ0π0π0\eta\rightarrow\pi^0\pi^0\pi^0 events and 1,888 ηπ0π0π0\eta^{\prime}\rightarrow\pi^0\pi^0\pi^0 events are performed. The measured matrix elements of ηπ+ππ0\eta\rightarrow\pi^+\pi^-\pi^0 are in reasonable agreement with previous measurements. The Dalitz plot slope parameters of ηπ0π0π0\eta\rightarrow\pi^0\pi^0\pi^0 and ηπ0π0π0\eta^{\prime}\rightarrow\pi^0\pi^0\pi^0 are determined to be 0.055±0.014±0.004-0.055 \pm 0.014 \pm 0.004 and 0.640±0.046±0.047-0.640 \pm 0.046 \pm 0.047, respectively, where the first uncertainties are statistical and the second systematic. Both values are consistent with previous measurements, while the precision of the latter one is improved by a factor of three. Final state interactions are found to have an important role in those decays.Comment: 12 pages, 7 figure
    corecore