1,039 research outputs found

    LSTM Pose Machines

    Full text link
    We observed that recent state-of-the-art results on single image human pose estimation were achieved by multi-stage Convolution Neural Networks (CNN). Notwithstanding the superior performance on static images, the application of these models on videos is not only computationally intensive, it also suffers from performance degeneration and flicking. Such suboptimal results are mainly attributed to the inability of imposing sequential geometric consistency, handling severe image quality degradation (e.g. motion blur and occlusion) as well as the inability of capturing the temporal correlation among video frames. In this paper, we proposed a novel recurrent network to tackle these problems. We showed that if we were to impose the weight sharing scheme to the multi-stage CNN, it could be re-written as a Recurrent Neural Network (RNN). This property decouples the relationship among multiple network stages and results in significantly faster speed in invoking the network for videos. It also enables the adoption of Long Short-Term Memory (LSTM) units between video frames. We found such memory augmented RNN is very effective in imposing geometric consistency among frames. It also well handles input quality degradation in videos while successfully stabilizes the sequential outputs. The experiments showed that our approach significantly outperformed current state-of-the-art methods on two large-scale video pose estimation benchmarks. We also explored the memory cells inside the LSTM and provided insights on why such mechanism would benefit the prediction for video-based pose estimations.Comment: Poster in IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 201

    Random vibration analysis for coupled vehicle-track systems with uncertain parameters

    Get PDF
    Purpose – The purpose of this paper is to present a new random vibration-based assessment method for coupled vehicle-track systems with uncertain parameters when subjected to random track irregularity. Design/methodology/approach – The uncertain parameters of vehicle are described as bounded random variables. The track is regarded as an infinite periodic structure, and the dynamic equations of the coupled vehicle-track system, under mixed physical coordinates and symplectic dual coordinates, are established through wheel-rail coupling relationships. The random track irregularities at the wheel-rail contact points are converted to a series of deterministic harmonic excitations with phase lag by using the pseudo excitation method. Based on the polynomial chaos expansion of the pseudo response, a chaos expanded pseudo equation is derived, leading to the combined hybrid pseudo excitation method-polynomial chaos expansion method. Findings – The impact of uncertainty propagation on the random vibration analysis is assessed efficiently. According to GB5599-85, the reliability analysis for the stability index is implemented, which can grade the comfort level by the probability. Comparing to the deterministic analysis, it turns out that neglect of the parameter uncertainty will lead to potentially risky analysis results. Originality/value – The proposed method is compared with Monte Carlo simulations, achieving good agreement. It is an effective means for random vibration analysis of uncertain coupled vehicle-track systems and has good engineering practicality
    corecore