4,150 research outputs found
Optimal Power Allocation over Multiple Identical Gilbert-Elliott Channels
We study the fundamental problem of power allocation over multiple
Gilbert-Elliott communication channels. In a communication system with time
varying channel qualities, it is important to allocate the limited transmission
power to channels that will be in good state. However, it is very challenging
to do so because channel states are usually unknown when the power allocation
decision is made. In this paper, we derive an optimal power allocation policy
that can maximize the expected discounted number of bits transmitted over an
infinite time span by allocating the transmission power only to those channels
that are believed to be good in the coming time slot. We use the concept belief
to represent the probability that a channel will be good and derive an optimal
power allocation policy that establishes a mapping from the channel belief to
an allocation decision.
Specifically, we first model this problem as a partially observable Markov
decision processes (POMDP), and analytically investigate the structure of the
optimal policy. Then a simple threshold-based policy is derived for a
three-channel communication system. By formulating and solving a linear
programming formulation of this power allocation problem, we further verified
the derived structure of the optimal policy.Comment: 10 pages, 7 figure
Three-Body Recombination near a Narrow Feshbach Resonance in 6 Li
We experimentally measure and theoretically analyze the three-atom recombination rate,
L3, around a narrow s-wave magnetic Feshbach resonance of 6Li−6Li at 543.3 G. By examining both the magnetic field dependence and, especially, the temperature dependence of L3 over a wide range of temperatures from a few μK to above 200 μK, we show that three-atom recombination through a narrow resonance follows a universal behavior determined by the long-range van der Waals potential and can be described by a set of rate equations in which three-body recombination proceeds via successive pairwise interactions. We expect the underlying physical picture to be applicable not only to narrow
s wave resonances, but also to resonances in nonzero partial waves, and not only at ultracold temperatures, but also at much higher temperatures
Review on the methods of automatic liver segmentation from abdominal images
Automatic liver segmentation from abdominal images is challenging on the aspects of segmentation accuracy, automation and robustness. There exist many methods of liver segmentation and ways of categorisingthem. In this paper, we present a new way of summarizing the latest achievements in automatic liver segmentation.We categorise a segmentation method according to the image feature it works on, therefore better summarising the performance of each category and leading to finding an optimal solution for a particular segmentation task. All the methods of liver segmentation are categorized into three main classes including gray level based method, structure based method and texture based method. In each class, the latest advance is reviewed with summary comments on the advantages and drawbacks of each discussed approach. Performance comparisons among the classes are given along with the remarks on the problems existed and possible solutions. In conclusion, we point out that liver segmentation is still an open issue and the tendency is that multiple methods will be employed to-gether to achieve better segmentation performance
Parametric cooling of a degenerate Fermi gas in an optical trap
We demonstrate a novel technique for cooling a degenerate Fermi gas in a
crossed-beam optical dipole trap, where high-energy atoms can be selectively
removed from the trap by modulating the stiffness of the trapping potential
with anharmonic trapping frequencies. We measure the dependence of the cooling
effect on the frequency and amplitude of the parametric modulations. It is
found that the large anharmonicity along the axial trapping potential allows to
generate a degenerate Fermi gas with anisotropic energy distribution, in which
the cloud energy in the axial direction can be reduced to the ground state
value
- …
