8,367 research outputs found

    Queue-Aware Energy-Efficient Joint Remote Radio Head Activation and Beamforming in Cloud Radio Access Networks

    Full text link
    In this paper, we study the stochastic optimization of cloud radio access networks (C-RANs) by joint remote radio head (RRH) activation and beamforming in the downlink. Unlike most previous works that only consider a static optimization framework with full traffic buffers, we formulate a dynamic optimization problem by explicitly considering the effects of random traffic arrivals and time-varying channel fading. The stochastic formulation can quantify the tradeoff between power consumption and queuing delay. Leveraging on the Lyapunov optimization technique, the stochastic optimization problem can be transformed into a per-slot penalized weighted sum rate maximization problem, which is shown to be non-deterministic polynomial-time hard. Based on the equivalence between the penalized weighted sum rate maximization problem and the penalized weighted minimum mean square error (WMMSE) problem, the group sparse beamforming optimization based WMMSE algorithm and the relaxed integer programming based WMMSE algorithm are proposed to efficiently obtain the joint RRH activation and beamforming policy. Both algorithms can converge to a stationary solution with low-complexity and can be implemented in a parallel manner, thus they are highly scalable to large-scale C-RANs. In addition, these two proposed algorithms provide a flexible and efficient means to adjust the power-delay tradeoff on demand.Comment: Accepted by IEEE Transactions on Wireless Communications, 14 pages, 8 figure

    Coalescence of Carbon Atoms on Cu (111) Surface: Emergence of a Stable Bridging-Metal Structure Motif

    Full text link
    By combining first principles transition state location and molecular dynamics simulation, we unambiguously identify a carbon atom approaching induced bridging metal structure formation on Cu (111) surface, which strongly modify the carbon atom coalescence dynamics. The emergence of this new structural motif turns out to be a result of the subtle balance between Cu-C and Cu-Cu interactions. Based on this picture, a simple theoretical model is proposed, which describes a variety of surface chemistries very well

    Injection method of barrier bucket supported by off-aligned electron cooling for CRing of HIAF

    Full text link
    A new accelerator complex, HIAF (the High Intensity Heavy Ion Accelerator Facility), has been approved in China. It is designed to provide intense primary and radioactive ion beams for research in high energy density physics, nuclear physics, atomic physics as well as other applications. In order to achieve a high intensity of up to 5e11 ppp 238U34+, the Compression Ring (CRing) needs to stack more than 5 bunches transferred from the Booster Ring (BRing). However, the normal bucket to bucket injection scheme can only achieve an intensity gain of 2, so an injection method, fixed barrier bucket (BB) supported by electron cooling, is proposed. To suppress the severe space charge effect during the stacking process, off-alignment is adopted in the cooler to control the transverse emittance. In this paper, simulation and optimization with the BETACOOL program are presented
    corecore