1,763 research outputs found
Pinning control of fractional-order weighted complex networks
In this paper, we consider the pinning control problem of fractional-order weighted complex dynamical networks. The well-studied integer-order complex networks are the special cases of the fractional-order ones. The network model considered can represent both directed and undirected weighted networks. First, based on the eigenvalue analysis and fractional-order stability theory, some local stability properties of such pinned fractional-order networks are derived and the valid stability regions are estimated. A surprising finding is that the fractional-order complex networks can stabilize itself by reducing the fractional-order q without pinning any node. Second, numerical algorithms for fractional-order complex networks are introduced in detail. Finally, numerical simulations in scale-free complex networks are provided to show that the smaller fractional-order q, the larger control gain matrix D, the larger tunable weight parameter , the larger overall coupling strength c, the more capacity that the pinning scheme may possess to enhance the control performance of fractional-order complex networks
Multiobjective synchronization of coupled systems
Copyright @ 2011 American Institute of PhysicsSynchronization of coupled chaotic systems has been a subject of great interest and importance, in theory but also various fields of application, such as secure communication and neuroscience. Recently, based on stability theory, synchronization of coupled chaotic systems by designing appropriate coupling has been widely investigated. However, almost all the available results have been focusing on ensuring the synchronization of coupled chaotic systems with as small coupling strengths as possible. In this contribution, we study multiobjective synchronization of coupled chaotic systems by considering two objectives in parallel, i. e., minimizing optimization of coupling strength and convergence speed. The coupling form and coupling strength are optimized by an improved multiobjective evolutionary approach. The constraints on the coupling form are also investigated by formulating the problem into a multiobjective constraint problem. We find that the proposed evolutionary method can outperform conventional adaptive strategy in several respects. The results presented in this paper can be extended into nonlinear time-series analysis, synchronization of complex networks and have various applications
Isospin Effect on the Process of Multifragmentation and Dissipation at Intermediate Energy Heavy Ion Collisions
In the simulation of intermediate energy heavy ion collisions by using the
isospin dependent quantum molecular dynamics, the isospin effect on the process
of multifragmentation and dissipation has been studied. It is found that the
multiplicity of intermediate mass fragments for the neutron-poor
colliding system is always larger than that for the neutron-rich system, while
the quadrupole of single particle momentum distribution for the
neutron-poor colliding system is smaller than that of the neutron-rich system
for all projectile-target combinations studied at the beam energies from about
50MeV/nucleon to 150MeV/nucleon. Since depends strongly on isospin
dependence of in-medium nucleon-nucleon cross section and weakly on symmetry
potential at the above beam energies, it may serve as a good probe to extract
the information on the in-medium nucleon-nucleon cross section. The correlation
between the multiplicity of intermediate mass fragments and the total
numer of charged particles has the behavior similar to , which
can be used as a complementary probe to the in-medium nucleon-nucleon cross
section.Comment: 18 pages, 9 figure
The fast light of CsI(Na) crystals
The responds of different common alkali halide crystals to alpha-rays and
gamma-rays are tested in our research. It is found that only CsI(Na) crystals
have significantly different waveforms between alpha and gamma scintillations,
while others have not this phenomena. It is suggested that the fast light of
CsI(Na) crystals arises from the recombination of free electrons with
self-trapped holes of the host crystal CsI. Self-absorption limits the emission
of fast light of CsI(Tl) and NaI(Tl) crystals.Comment: 5 pages, 11 figures Submit to Chinese Physics
Parameters identification of unknown delayed genetic regulatory networks by a switching particle swarm optimization algorithm
The official published version can be found at the link below.This paper presents a novel particle swarm optimization (PSO) algorithm based on Markov chains and competitive penalized method. Such an algorithm is developed to solve global optimization problems with applications in identifying unknown parameters of a class of genetic regulatory networks (GRNs). By using an evolutionary factor, a new switching PSO (SPSO) algorithm is first proposed and analyzed, where the velocity updating equation jumps from one mode to another according to a Markov chain, and acceleration coefficients are dependent on mode switching. Furthermore, a leader competitive penalized multi-learning approach (LCPMLA) is introduced to improve the global search ability and refine the convergent solutions. The LCPMLA can automatically choose search strategy using a learning and penalizing mechanism. The presented SPSO algorithm is compared with some well-known PSO algorithms in the experiments. It is shown that the SPSO algorithm has faster local convergence speed, higher accuracy and algorithm reliability, resulting in better balance between the global and local searching of the algorithm, and thus generating good performance. Finally, we utilize the presented SPSO algorithm to identify not only the unknown parameters but also the coupling topology and time-delay of a class of GRNs.This research was partially supported by the National Natural Science Foundation of PR China (Grant No. 60874113), the Research Fund for the Doctoral Program of Higher Education (Grant No. 200802550007), the Key Creative Project of Shanghai Education Community (Grant No. 09ZZ66), the Key Foundation Project of Shanghai (Grant No. 09JC1400700), the Engineering and Physical Sciences Research Council EPSRC of the UK under Grant No. GR/S27658/01, the International Science and Technology Cooperation Project of China under Grant No. 2009DFA32050, an International Joint Project sponsored by the Royal Society of the UK, and the Alexander von Humboldt Foundation of Germany
Experimental study of THGEM detector with mini-rim
The gas gain and energy resolution of single and double THGEM detectors
(5{\times}5cm2 effective area) with mini-rims (rim is less than 10{\mu}m) were
studied. The maximum gain can reach 5{\times}103 and 2{\times}105 for single
and double THGEM respectively, while the energy resolution of 5.9 keV X-ray
varied from 18% to 28% for both single and double THGEM detectors of different
hole sizes and thicknesses.All the experiments were investigated in mixture of
noble gases(argon,neon) and small content of other gases(iso-butane,methane) at
atmospheric pressure.Comment: 4pages,6figures, it has been submitted to Chinese Physics
Controller design for synchronization of an array of delayed neural networks using a controllable
This is the post-print version of the Article - Copyright @ 2011 ElsevierIn this paper, a controllable probabilistic particle swarm optimization (CPPSO) algorithm is introduced based on Bernoulli stochastic variables and a competitive penalized method. The CPPSO algorithm is proposed to solve optimization problems and is then applied to design the memoryless feedback controller, which is used in the synchronization of an array of delayed neural networks (DNNs). The learning strategies occur in a random way governed by Bernoulli stochastic variables. The expectations of Bernoulli stochastic variables are automatically updated by the search environment. The proposed method not only keeps the diversity of the swarm, but also maintains the rapid convergence of the CPPSO algorithm according to the competitive penalized mechanism. In addition, the convergence rate is improved because the inertia weight of each particle is automatically computed according to the feedback of fitness value. The efficiency of the proposed CPPSO algorithm is demonstrated by comparing it with some well-known PSO algorithms on benchmark test functions with and without rotations. In the end, the proposed CPPSO algorithm is used to design the controller for the synchronization of an array of continuous-time delayed neural networks.This research was partially supported by the National Natural Science Foundation of PR China (Grant No 60874113), the Research Fund for the Doctoral Program of Higher Education (Grant No 200802550007), the Key Creative Project of Shanghai Education Community (Grant No 09ZZ66), the Key Foundation
Project of Shanghai(Grant No 09JC1400700), the Engineering and Physical Sciences Research Council EPSRC of the U.K. under Grant No. GR/S27658/01, an International Joint Project sponsored by the Royal Society of the U.K., and the Alexander von Humboldt Foundation of Germany
Feedback learning particle swarm optimization
This is the author’s version of a work that was accepted for publication in Applied Soft Computing. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published and is available at the link below - Copyright @ Elsevier 2011In this paper, a feedback learning particle swarm optimization algorithm with quadratic inertia weight (FLPSO-QIW) is developed to solve optimization problems. The proposed FLPSO-QIW consists of four steps. Firstly, the inertia weight is calculated by a designed quadratic function instead of conventional linearly decreasing function. Secondly, acceleration coefficients are determined not only by the generation number but also by the search environment described by each particle’s history best fitness information. Thirdly, the feedback fitness information of each particle is used to automatically design the learning probabilities. Fourthly, an elite stochastic learning (ELS) method is used to refine the solution. The FLPSO-QIW has been comprehensively evaluated on 18 unimodal, multimodal and composite benchmark functions with or without rotation. Compared with various state-of-the-art PSO algorithms, the performance of FLPSO-QIW is promising and competitive. The effects of parameter adaptation, parameter sensitivity and proposed mechanism are discussed in detail.This research was partially supported by the National Natural Science Foundation of PR China (Grant No 60874113), the Research Fund
for the Doctoral Program of Higher Education (Grant No 200802550007), the Key Creative Project of Shanghai Education Community (Grant No 09ZZ66), the Key Foundation Project of Shanghai(Grant No 09JC1400700), the International Science and Technology Cooperation Project of China under Grant 2009DFA32050, and the Alexander von Humboldt Foundation of Germany
- …
