4,494 research outputs found
Two-Timescale Hybrid Compression and Forward for Massive MIMO Aided C-RAN
We consider the uplink of a cloud radio access network (C-RAN), where massive
MIMO remote radio heads (RRHs) serve as relays between users and a centralized
baseband unit (BBU). Although employing massive MIMO at RRHs can improve the
spectral efficiency, it also significantly increases the amount of data
transported over the fronthaul links between RRHs and BBU, which becomes a
performance bottleneck. Existing fronthaul compression methods for conventional
C-RAN are not suitable for the massive MIMO regime because they require
fully-digital processing and/or real-time full channel state information (CSI),
incurring high implementation cost for massive MIMO RRHs. To overcome this
challenge, we propose to perform a two-timescale hybrid analog-and-digital
spatial filtering at each RRH to reduce the fronthaul consumption.
Specifically, the analog filter is adaptive to the channel statistics to
achieve massive MIMO array gain, and the digital filter is adaptive to the
instantaneous effective CSI to achieve spatial multiplexing gain. Such a design
can alleviate the performance bottleneck of limited fronthaul with reduced
hardware cost and power consumption, and is more robust to the CSI delay. We
propose an online algorithm for the two-timescale non-convex optimization of
analog and digital filters, and establish its convergence to stationary
solutions. Finally, simulations verify the advantages of the proposed scheme.Comment: 15 pages, 8 figures, accepted by IEEE Transactions on Signal
Processin
Experimental Realization of Entanglement Concentration and A Quantum Repeater
We report an experimental realization of entanglement concentration using two
polarization-entangled photon pairs produced by pulsed parametric
down-conversion. In the meantime, our setup also provides a proof-in-principle
demonstration of a quantum repeater. The quality of our procedure is verified
by observing a violation of Bell's inequality by more than 5 standard
deviations. The high experimental accuracy achieved in the experiment implies
that the requirement of tolerable error rate in multi-stage realization of
quantum repeaters can be fulfilled, hence providing a practical toolbox for
quantum communication over large distances.Comment: 15 pages, 4 figures, submitte
Experimental demonstration of a non-destructive controlled-NOT quantum gate for two independent photon-qubits
Universal logic gates for two quantum bits (qubits) form an essential
ingredient of quantum information processing. However, the photons, one of the
best candidates for qubits, suffer from the lack of strong nonlinear coupling
required for quantum logic operations. Here we show how this drawback can be
overcome by reporting a proof-of-principle experimental demonstration of a
non-destructive controlled-NOT (CNOT) gate for two independent photons using
only linear optical elements in conjunction with single-photon sources and
conditional dynamics. Moreover, we have exploited the CNOT gate to discriminate
all the four Bell-states in a teleportation experiment.Comment: 4 pages, 4 figures, submitte
Experimental realization of optimal asymmetric cloning and telecloning via partial teleportation
We report an experimental realization of both optimal asymmetric cloning and
telecloning of single photons by making use of partial teleportation of an
unknown state. In the experiment, we demonstrate that, conditioned on the
success of partial teleportation of single photons, not only the optimal
asymmetric cloning can be accomplished, but also one of two outputs can be
transfered to a distant location, realizing the telecloning. The experimental
results represent a novel way to achieve the quantum cloning and may have
potential applications in the context of quantum communication.Comment: 4 pages and 4 figure
Enhanced surface acceleration of fast electrons by using sub-wavelength grating targets
Surface acceleration of fast electrons in intense laser-plasma interaction is
improved by using sub-wavelength grating targets. The fast electron beam
emitted along the target surface was enhanced by more than three times relative
to that by using planar target. The total number of the fast electrons ejected
from the front side of target was also increased by about one time. The method
to enhance the surface acceleration of fast electron is effective for various
targets with sub-wavelength structured surface, and can be applied widely in
the cone-guided fast ignition, energetic ion acceleration, plasma device, and
other high energy density physics experiments.Comment: 14 pages, 4figure
Isospin Effect on the Process of Multifragmentation and Dissipation at Intermediate Energy Heavy Ion Collisions
In the simulation of intermediate energy heavy ion collisions by using the
isospin dependent quantum molecular dynamics, the isospin effect on the process
of multifragmentation and dissipation has been studied. It is found that the
multiplicity of intermediate mass fragments for the neutron-poor
colliding system is always larger than that for the neutron-rich system, while
the quadrupole of single particle momentum distribution for the
neutron-poor colliding system is smaller than that of the neutron-rich system
for all projectile-target combinations studied at the beam energies from about
50MeV/nucleon to 150MeV/nucleon. Since depends strongly on isospin
dependence of in-medium nucleon-nucleon cross section and weakly on symmetry
potential at the above beam energies, it may serve as a good probe to extract
the information on the in-medium nucleon-nucleon cross section. The correlation
between the multiplicity of intermediate mass fragments and the total
numer of charged particles has the behavior similar to , which
can be used as a complementary probe to the in-medium nucleon-nucleon cross
section.Comment: 18 pages, 9 figure
Two variants on T2DM susceptible gene HHEX are associated with CRC risk in a Chinese population
Increasing amounts of evidence has demonstrated that T2DM (Type 2 Diabetes Mellitus) patients have increased susceptibility to CRC (colorectal cancer). As HHEX is a recognized susceptibility gene in T2DM, this work was focused on two SNPs in HHEX, rs1111875 and rs7923837, to study their association with CRC. T2DM patients without CRC (T2DM-only, n=300), T2DM with CRC (T2DM/CRC, n=135), cancer-free controls (Control, n=570), and CRC without T2DM (CRC-only, n=642) cases were enrolled. DNA samples were extracted from the peripheral blood leukocytes of the patients and sequenced by direct sequencing. The χ(2) test was used to compare categorical data. We found that in T2DM patients, rs1111875 but not the rs7923837 in HHEX gene was associated with the occurrence of CRC (p= 0.006). for rs1111875, TC/CC patients had an increased risk of CRC (p=0.019, OR=1.592, 95%CI=1.046-2.423). Moreover, our results also indicated that the two variants of HEEX gene could be risk factors for CRC in general population, independent on T2DM (p< 0.001 for rs1111875, p=0.001 for rs7923837). For rs1111875, increased risk of CRC was observed in TC or TC/CC than CC individuals (p<0.001, OR= 1.780, 95%CI= 1.385-2.287; p<0.001, OR= 1.695, 95%CI= 1.335-2.152). For rs7923837, increased CRC risk was observed in AG, GG, and AG/GG than AA individuals (p< 0.001, OR= 1.520, 95%CI= 1.200-1.924; p=0.036, OR= 1.739, 95%CI= 0.989-3.058; p< 0.001, OR= 1.540, 95%CI= 1.225-1.936). This finding highlights the potentially functional alteration with HHEX rs1111875 and rs7923837 polymorphisms may increase CRC susceptibility. Risk effects and the functional impact of these polymorphisms need further validation
Experimental Construction of Optical Multi-qubit Cluster States From Bell States
Cluster states serve as the central physical resource for the
measurement-based quantum computation. We here present a simple experimental
demonstration of the scalable cluster-state-construction scheme proposed by
Browne and Rudolph. In our experiment, three-photon cluster states are created
from two Bell states using linear optical devices. By observing a violation of
three-particle Mermin inequality of , we also
for the first time report a genuine three-photon entanglement. In addition, the
entanglement properties of the cluster states are examined under and
measurements on a qubit.Comment: 4 pages, 4 figures, submitte
Experimental Violation of Bell Inequality beyond Cirel'son's Bound
The correlations between two qubits belonging to a three-qubit system can
violate the Clauser-Horne-Shimony-Holt-Bell inequality beyond Cirel'son's bound
[A. Cabello, Phys. Rev. Lett. 88, 060403 (2002)]. We experimentally demonstrate
such a violation by 7 standard deviations by using a three-photon
polarization-entangled Greenberger-Horne-Zeilinger state produced by Type-II
spontaneous parametric down-conversion. In addition, using part of our results,
we obtain a violation of the Mermin inequality by 39 standard deviations.Comment: 4 pages, 3 figure
- …
