5,244 research outputs found

    Gradient flow approach to an exponential thin film equation: global existence and latent singularity

    Full text link
    In this work, we study a fourth order exponential equation, ut=ΔeΔu,u_t=\Delta e^{-\Delta u}, derived from thin film growth on crystal surface in multiple space dimensions. We use the gradient flow method in metric space to characterize the latent singularity in global strong solution, which is intrinsic due to high degeneration. We define a suitable functional, which reveals where the singularity happens, and then prove the variational inequality solution under very weak assumptions for initial data. Moreover, the existence of global strong solution is established with regular initial data.Comment: latent singularity, curve of maximal slope. arXiv admin note: text overlap with arXiv:1711.07405 by other author

    Reevaluation of the density dependence of nucleon radius and mass in the global color symmetry model of QCD

    Full text link
    With the global color symmetry model (GCM) at finite chemical potential, the density dependence of the bag constant, the total energy and the radius of a nucleon in nuclear matter is investigated. A relation between the nuclear matter density and the chemical potential with the action of QCD being taken into account is obtained. A maximal nuclear matter density for the existence of the bag with three quarks confined within is given. The calculated results indicate that, before the maximal density is reached, the bag constant and the total energy of a nucleon decrease, and the radius of a nucleon increases slowly, with the increasing of the nuclear matter density. As the maximal nuclear matter density is reached, the mass of the nucleon vanishes and the radius becomes infinite suddenly. It manifests that a phase transition from nucleons to quarks takes place.Comment: 18 pages, 3 figure

    Quasiparticle states around a nonmagnetic impurity in electron-doped iron-based superconductors with spin-density-wave order

    Full text link
    The quasiparticle states around a nonmagnetic impurity in electron-doped iron-based superconductors with spin-density-wave (SDW) order are investigated as a function of doping and impurity scattering strength. In the undoped sample, where a pure SDW state exists, two impurity-induced resonance peaks are observed around the impurity site and they are shifted to higher (lower) energies as the strength of the positive (negative) scattering potential (SP) is increased. For the doped samples where the SDW order and the superconducting order coexist, the main feature is the existence of sharp in-gap resonance peaks whose positions and intensity depend on the strength of the SP and the doping concentration. In all cases, the local density of states exhibits clear C2C_2 symmetry. We also note that in the doped cases, the impurity will divide the system into two sublattices with distinct values of magnetic order. Here we use the band structure of a two-orbital model, which considers the asymmetry of the As atoms above and below the Fe-Fe plane. This model is suitable to study the properties of the surface layers in the iron-pnictides and should be more appropriate to describe the scanning tunneling microscopy experiments.Comment: 11 pages, 18 figure

    Nuclear dependence of azimuthal asymmetry in semi-inclusive deep inelastic scattering

    Full text link
    Within the framework of a generalized factorization, semi-inclusive deeply inelastic scattering (SIDIS) cross sections can be expressed as a series of products of collinear hard parts and transverse-momentum-dependent (TMD) parton distributions and correlations. The azimuthal asymmetry ofunpolarizedSIDISinthesmalltransversemomentumregionwilldependonbothtwist2and3TMDquarkdistributionsintargetnucleonsornuclei.Nuclearbroadeningofthesetwist2and3quarkdistributionsduetofinalstatemultiplescatteringinnucleiisinvestigatedandthenucleardependenceoftheazimuthalasymmetry of unpolarized SIDIS in the small transverse momentum region will depend on both twist-2 and 3 TMD quark distributions in target nucleons or nuclei. Nuclear broadening of these twist-2 and 3 quark distributions due to final-state multiple scattering in nuclei is investigated and the nuclear dependence of the azimuthal asymmetry $ is studied. It is shown that the azimuthal asymmetry is suppressed by multiple parton scattering and the transverse momentum dependence of the suppression depends on the relative shape of the twist-2 and 3 quark distributions in the nucleon. A Gaussian ansatz for TMD twist-2 and 3 quark distributions in nucleon is used to demonstrate the nuclear dependence of the azimuthal asymmetry and to estimate the smearing effect due to fragmentation.Comment: 9 pages in RevTex with 2 figure

    Twist-4 contributions to the azimuthal asymmetry in SIDIS

    Full text link
    We calculate the differential cross section for the unpolarized semi-inclusive deeply inelastic scattering (SIDIS) process e+Ne+q+Xe^-+N \to e^-+q+X in leading order (LO) of perturbative QCD and up to twist-4 in power corrections and study in particular the azimuthal asymmetry . The final results are expressed in terms of transverse momentum dependent (TMD) parton matrix elements of the target nucleon up to twist-4. %Under the maximal two-gluon correlation approximation, these TMD parton matrix elements in a nucleus %can be expressed terms of a Gaussian convolution of that in a nucleon with the width given by the jet transport %parameter inside cold nuclei. We also apply it to $e^-+A \to e^-+q+X$ and illustrate numerically the nuclear dependence of the azimuthal asymmetry by using a Gaussian ansatz for the TMD parton matrix elements.Comment: 9 pages, afigur

    Miniaturized high-frequency sine wave gating InGaAs/InP single-photon detector

    Full text link
    High-frequency gating InGaAs/InP single-photon detectors (SPDs) are widely used for applications requiring single-photon detection in the near-infrared region such as quantum key distribution. Reducing SPD size is highly desired for practical use, which is favorable to the implementation of further system integration. Here we present, to the best of our knowledge, the most compact high-frequency sine wave gating (SWG) InGaAs/InP SPD. We design and fabricate an InGaAs/InP single-photon avalanche diode (SPAD) with optimized semiconductor structure, and then encapsulate the SPAD chip and a mini-thermoelectric cooler inside a butterfly package with a size of 12.5 mm ×\times 22 mm ×\times 10 mm. Moreover, we implement a monolithic readout circuit for the SWG SPD in order to replace the quenching electronics that is previously designed with board-level integration. Finally, the components of SPAD, monolithic readout circuit and the affiliated circuits are integrated into a single module with a size of 13 cm ×\times 8 cm ×\times 4 cm. Compared with the 1.25 GHz SWG InGaAs/InP SPD module (25 cm ×\times 10 cm ×\times 33 cm) designed in 2012, the volume of our miniaturized SPD is reduced by 95\%. After the characterization, the SPD exhibits excellent performance with a photon detection efficiency of 30\%, a dark count rate of 2.0 kcps and an afterpulse probability of 8.8\% under the conditions of 1.25 GHz gating rate, 100 ns hold-off time and 243 K. Also, we perform the stability test over one week, and the results show the high reliability of the miniaturized SPD module.Comment: 5 pages, 6 figures. Accepted for publication in Review of Scientific Instrument
    corecore