2,251 research outputs found

    Enhanced hydrogen sensing properties of graphene by introducing a mono-atom-vacancy

    Full text link
    To facilitate the dissociative adsorption of H2 molecules on pristine graphene, the addition of a mono-atom-vacancy to graphene is proposed. This leads to reduction of the dissociative energy barrier for a H2 molecule on graphene from 3.097 to 0.805 eV for the first H2 and 0.869 eV for the second, according to first principles calculations. As a result, two H2 molecules can be easily dissociatively adsorbed on this defected graphene at room temperature. The electronic structure and conductivity of the graphene change significantly after H2 adsorption. In addition, the related dissociative adsorption phase diagrams under different temperatures and partial pressures show that this dissociative adsorption at room temperature is very sensitive (10-35 mol L -1). Therefore, this defected graphene is promising for ultra-sensitive room temperature hydrogen sensing. © 2013 the Owner Societies

    Increased DMT1 expression and iron content in MPTP-treated C57BL/6 mice

    Get PDF
    2003-2004 > Academic research: refereed > Publication in refereed journalVersion of RecordPublishe

    First Principles Study on the Electronic Structure and Interface Stability of Hybrid Silicene/Fluorosilicene Nanoribbons

    Full text link
    © 2015 Macmillan Publishers Limited. The interface stability of hybrid silicene/fluorosilicene nanoribbons (SFNRs) has been investigated by using density functional theory calculations, where fluorosilicene is the fully fluorinated silicene. It is found that the diffusion of F atoms at the zigzag and armchair interfaces of SFNRs is endothermic, and the corresponding minimum energy barriers are respectively 1.66 and 1.56 eV, which are remarkably higher than the minimum diffusion energy barrier of one F atom and two F atoms on pristine silicene 1.00 and 1.29 eV, respectively. Therefore, the thermal stability of SFNRs can be significantly enhanced by increasing the F diffusion barriers through silicene/fluorosilicene interface engineering. In addition, the electronic and magnetic properties of SFNRs are also investigated. It is found that the armchair SFNRs are nonmagnetic semiconductors, and the band gap of armchair SFNRs presents oscillatory behavior when the width of silicene part changing. For the zigzag SFNRs, the antiferromagnetic semiconducting state is the most stable one. This work provides fundamental insights for the applications of SFNRs in electronic devices

    Enhancement of CO detection in Al doped graphene

    Full text link
    A principle of the enhancement of CO adsorption was developed theoretically by using density functional theory through doping Al into graphene. The results show that the Al doped graphene has strong chemisorption of CO molecule by forming Al-CO bond, where CO onto intrinsic graphene remains weak physisorption. Furthermore, the enhancement of CO sensitivity in the Al doped graphene is determined by a large electrical conductivity change after adsorption, where CO absorption leads to increase of electrical conductivity via introducing large amount of shallow acceptor states. Therefore, this newly developed Al doped graphene would be an excellent candidate for sensing CO gas. © 2008 Elsevier B.V. All rights reserved

    Atomic structures of TDP-43 LCD segments and insights into reversible or pathogenic aggregation.

    Get PDF
    The normally soluble TAR DNA-binding protein 43 (TDP-43) is found aggregated both in reversible stress granules and in irreversible pathogenic amyloid. In TDP-43, the low-complexity domain (LCD) is believed to be involved in both types of aggregation. To uncover the structural origins of these two modes of β-sheet-rich aggregation, we have determined ten structures of segments of the LCD of human TDP-43. Six of these segments form steric zippers characteristic of the spines of pathogenic amyloid fibrils; four others form LARKS, the labile amyloid-like interactions characteristic of protein hydrogels and proteins found in membraneless organelles, including stress granules. Supporting a hypothetical pathway from reversible to irreversible amyloid aggregation, we found that familial ALS variants of TDP-43 convert LARKS to irreversible aggregates. Our structures suggest how TDP-43 adopts both reversible and irreversible β-sheet aggregates and the role of mutation in the possible transition of reversible to irreversible pathogenic aggregation

    Density functional theory study on the electronic properties and stability of silicene/silicane nanoribbons

    Full text link
    © The Royal Society of Chemistry 2015. The thermal stability of silicene/silicane nanoribbons (SSNRs) has been investigated by using density functional theory calculations, where silicane is the fully hydrogenated silicene. It was found that the minimum energy barriers for the diffusion of hydrogen atoms at the zigzag and armchair interfaces of SSNRs are 1.54 and 1.47 eV, respectively, while the diffusion of H atoms at both interfaces is always endothermic. Meanwhile, the minimum diffusion energy barriers of one H atom and two H atoms on pristine silicene are 0.73 and 0.87 eV, respectively. Therefore, the thermal stability of SSNRs can be significantly enhanced by increasing the hydrogen diffusion barriers through silicene/silicane interface engineering. In addition, the zigzag SSNR remains metallic, whereas the armchair SSNR is semiconducting. However, the silicene nanoribbons part-determine the metallic or semiconducting behaviour in the SSNRs. This work provides fundamental insights for the applications of SSNRs in electronic devices. This journal i

    Frataxin、线粒体铁代谢与Friedreich遗传性共济失调

    Get PDF
    2002-2003 > Academic research: refereed > Publication in refereed journalVersion of RecordPublishe

    Search for new phenomena in final states with an energetic jet and large missing transverse momentum in pp collisions at √ s = 8 TeV with the ATLAS detector

    Get PDF
    Results of a search for new phenomena in final states with an energetic jet and large missing transverse momentum are reported. The search uses 20.3 fb−1 of √ s = 8 TeV data collected in 2012 with the ATLAS detector at the LHC. Events are required to have at least one jet with pT > 120 GeV and no leptons. Nine signal regions are considered with increasing missing transverse momentum requirements between Emiss T > 150 GeV and Emiss T > 700 GeV. Good agreement is observed between the number of events in data and Standard Model expectations. The results are translated into exclusion limits on models with either large extra spatial dimensions, pair production of weakly interacting dark matter candidates, or production of very light gravitinos in a gauge-mediated supersymmetric model. In addition, limits on the production of an invisibly decaying Higgs-like boson leading to similar topologies in the final state are presente

    Search for direct pair production of the top squark in all-hadronic final states in proton-proton collisions at s√=8 TeV with the ATLAS detector

    Get PDF
    The results of a search for direct pair production of the scalar partner to the top quark using an integrated luminosity of 20.1fb−1 of proton–proton collision data at √s = 8 TeV recorded with the ATLAS detector at the LHC are reported. The top squark is assumed to decay via t˜→tχ˜01 or t˜→ bχ˜±1 →bW(∗)χ˜01 , where χ˜01 (χ˜±1 ) denotes the lightest neutralino (chargino) in supersymmetric models. The search targets a fully-hadronic final state in events with four or more jets and large missing transverse momentum. No significant excess over the Standard Model background prediction is observed, and exclusion limits are reported in terms of the top squark and neutralino masses and as a function of the branching fraction of t˜ → tχ˜01 . For a branching fraction of 100%, top squark masses in the range 270–645 GeV are excluded for χ˜01 masses below 30 GeV. For a branching fraction of 50% to either t˜ → tχ˜01 or t˜ → bχ˜±1 , and assuming the χ˜±1 mass to be twice the χ˜01 mass, top squark masses in the range 250–550 GeV are excluded for χ˜01 masses below 60 GeV

    Numerical simulation of deflagration to detonation transition in a straight duct: Effects of energy release and detonation stability

    Get PDF
    Numerical simulation based on the Euler equation and one-step reaction model is carried out to investigate the process of deflagration to detonation transition (DDT) occurring in a straight duct. The numerical method used includes a high resolution fifth-order weighted essentially non-oscillatory (WENO) scheme for spatial discretization, coupled with a third order total variation diminishing Runge-Kutta time stepping method. In particular, effect of energy release on the DDT process is studied. The model parameters used are the heat release at q = 50,30,25,20,15,10 and 5, the specific heat ratio at 1.2, and the activation temperature at Ti = 15, respectively. For all the cases, the initial energy in the spark is about the same compared to the detonation energy at the Chapman-Jouguet (CJ) state. It is found from the simulation that the DDT occurrence strongly depends on the magnitude of the energy release. The run-up distance of DDT occurrence decreases with the increase of the energy release for q = 50 similar to 20, and increases with the increase of the energy release for q = 20 similar to 5. This phenomenon is found to be in agreement with the analysis of mathematical stability theory. It is suggested that the factors to strengthen the DDT would make the detonation more stable, and vice versa. Finally, it is concluded from the simulations that the interaction of the shock wave and the flame front is the main reason for leading to DDT.</font
    corecore