153 research outputs found

    High-order brain network feature extraction and classification method of first-episode schizophrenia: an EEG study

    Get PDF
    IntroductionA multimodal persistent topological feature extraction and classification method is proposed to enhance the recognition accuracy of first-episode schizophrenia patients. This approach addresses the limitations of traditional higher-order brain network analyses that rely on single persistent features (e.g., persistent images).MethodsThe study utilized resting-state EEG data from 198 subjects recruited at Huilongguan Hospital in Beijing, comprising 102 males and 96 females, with a mean age of 30 years and mean education of 14 years. Persistent topological features were extracted using adaptive thresholding during persistent homology (PH) filtrations. The distribution of these features was visualized through heatmaps and persistence entropies, while the generation process was elucidated using Betti curves and persistence landscapes.ResultsThe classification performance of the multimodal persistent topological features was assessed using various machine learning classifiers. The classifier yielding the highest performance was selected for comparison with traditional brain network features derived from graph theory and single persistent topological features. The results revealed significant topological changes in first-episode schizophrenia patients throughout the persistent homology filtering compared to healthy subjects. The univariate feature selection algorithm achieved a classification accuracy of 94.6% with a combination of attributes meeting the criterion of AC ≥ 0.6.DiscussionThe proposed method demonstrates clinical significance for the early identification and diagnosis of first-episode schizophrenia patients, offering a new research perspective for constructing higher-order functional connectivity networks and extracting topological structure features

    Detection and analysis of human papillomavirus (HPV) DNA in breast cancer patients by an effective method of HPV capture

    Get PDF
    Despite an increase in the number of molecular epidemiological studies conducted in recent years to evaluate the association between human papillomavirus (HPV) and the risk of breast carcinoma, these studies remain inconclusive. Here we aim to detect HPV DNA in various tissues from patients with breast carcinoma using the method of HPV capture combined with massive paralleled sequencing (MPS). To validate the confidence of our methods, 15 cervical cancer samples were tested by PCR and the new method. Results showed that there was 100% consistence between the two methods.DNA from peripheral blood, tumor tissue, adjacent lymph nodes and adjacent normal tissue were collected from seven malignant breast cancer patients, and HPV type 16(HPV16) was detected in 1/7, 1/7, 1/7and 1/7 of patients respectively. Peripheral blood, tumor tissue and adjacent normal tissue were also collected from two patients with benign breast tumor, and 1/2, 2/2 and 2/2 was detected to have HPV16 DNA respectively. MPS metrics including mapping ratio, coverage, depth and SNVs were provided to characterize HPV in samples. The average coverage was 69% and 61.2% for malignant and benign samples respectively. 126 SNVs were identified in all 9 samples. The maximum number of SNVs was located in the gene of E2 and E4 among all samples. Our study not only provided an efficient method to capture HPV DNA, but detected the SNVS, coverage, SNV type and depth. The finding has provided further clue of association between HPV16 and breast cancer

    Intranasal Delivery of miR-146a Mimics Delayed Seizure Onset in the Lithium-Pilocarpine Mouse Model

    Full text link
    Unveiling the key mechanism of temporal lobe epilepsy (TLE) for the development of novel treatments is of increasing interest, and anti-inflammatory miR-146a is now considered a promising molecular target for TLE. In the current study, a C57BL/6 TLE mouse model was established using the lithium-pilocarpine protocol. The seizure degree was evaluated according to the Racine scale, and level 5 was considered the threshold for generalized convulsions. Animals were sacrificed to analyze the hippocampus at three time points (2 h and 4 and 8 weeks after pilocarpine administration to evaluate the acute, latent, and chronic phases, resp.). After intranasal delivery of miR-146a mimics (30 min before pilocarpine injection), the percent of animals with no induced seizures increased by 6.7%, the latency to generalized convulsions was extended, and seizure severity was reduced. Additionally, hippocampal damage was alleviated. While the relative miR-146a levels significantly increased, the expression of its target mRNAs (IRAK-1 and TRAF-6) and typical inflammatory modulators (NF-κB, TNF-α, IL-1β, and IL-6) decreased, supporting an anti-inflammatory role of miR-146a via the TLR pathway. This study is the first to demonstrate that intranasal delivery of miR-146a mimics can improve seizure onset and hippocampal damage in the acute phase of lithium-pilocarpine-induced seizures, which provides inflammation-based clues for the development of novel TLE treatments

    Photoemission Evidence of a Novel Charge Order in Kagome Metal FeGe

    Full text link
    A charge order has been discovered to emerge deep into the antiferromagnetic phase of the kagome metal FeGe. To study its origin, the evolution of the low-lying electronic structure across the charge order phase transition is investigated with angle-resolved photoemission spectroscopy. We do not find signatures of nesting between Fermi surface sections or van-Hove singularities in zero-frequency joint density of states, and there are no obvious energy gaps at the Fermi level, which exclude the nesting mechanism for the charge order formation in FeGe. However, two obvious changes in the band structure have been detected, i.e., one electron-like band around the K point and another one around the A point move upward in energy position when the charge order forms. These features can be well reproduced by our density-functional theory calculations, where the charge order is primarily driven by magnetic energy saving via large dimerizations of a quarter of Ge1-sites (in the kagome plane) along the c-axis. Our results provide strong support for this novel charge order formation mechanism in FeGe, in contrast to the conventional nesting mechanism.Comment: 6 pages, 4 figure

    GlyT1 inhibition by ALX-5407 attenuates allograft rejection through suppression of Th1 cell differentiation

    Get PDF
    ObjectiveTransplant rejection driven by Th1 cell-mediated immune responses remains a critical challenge. This study aimed to investigate the role of glycine transporter 1 (GlyT1/SLC6A9) in Th1 differentiation and evaluate the therapeutic potential of its inhibitor, ALX-5407, in attenuating allograft rejection.MethodsRNA sequencing, flow cytometry, and qRT-PCR were employed to analyze GlyT1 expression in Th1-polarized CD4+T cells. ALX-5407 (0.5–500 nM) was tested in vitro under Th1-polarizing conditions. A murine skin allograft model (BALB/c to C57BL/6) was established to assess graft survival and immune responses. Combination therapy with rapamycin and ALX-5407 was evaluated through histopathology, immunofluorescence, and splenocyte profiling. Mechanistic insights were derived from RNA-seq, KEGG/GO enrichment, and Western blotting.ResultsGlyT1 expression was significantly upregulated in Th1 cells and rejection cohorts. ALX-5407 suppressed Th1 differentiation, reducing IFN-γ+CD4+T cells proportions (p < 0.05) and activation markers (CD25, CD69), while inducing apoptosis via caspase-3 activation and BCL-2 downregulation. Although ALX-5407 monotherapy failed to prolong graft survival, combination with rapamycin synergistically enhanced efficacy (p = 0.018), reduced inflammatory infiltration, and attenuated splenic Th1 polarization. Mechanistically, ALX-5407 inhibited MAPK signaling but activated the PI3K-AKT-mTOR pathway, which rapamycin counteracted to amplify suppression.ConclusionsGlyT1 serves as a metabolic checkpoint in Th1 differentiation, and its inhibition by ALX-5407 attenuates allograft rejection through dual suppression of Th1 function and apoptosis induction. Synergy with rapamycin highlights a novel combinatorial strategy to mitigate rejection with reduced toxicity. These findings position GlyT1 targeting as a promising approach for clinical translation in transplantation immunotherapy

    Full-length single-cell RNA-seq applied to a viral human cancer:applications to HPV expression and splicing analysis in HeLa S3 cells

    Get PDF
    Background: Viral infection causes multiple forms of human cancer, and HPV infection is the primary factor in cervical carcinomas Recent single-cell RNA-seq studies highlight the tumor heterogeneity present in most cancers, but virally induced tumors have not been studied HeLa is a well characterized HPV+ cervical cancer cell line Result: We developed a new high throughput platform to prepare single-cell RNA on a nanoliter scale based on a customized microwell chip Using this method, we successfully amplified full-length transcripts of 669 single HeLa S3 cells and 40 of them were randomly selected to perform single-cell RNA sequencing Based on these data, we obtained a comprehensive understanding of the heterogeneity of HeLa S3 cells in gene expression, alternative splicing and fusions Furthermore, we identified a high diversity of HPV-18 expression and splicing at the single-cell level By co-expression analysis we identified 283 E6, E7 co-regulated genes, including CDC25, PCNA, PLK4, BUB1B and IRF1 known to interact with HPV viral proteins Conclusion: Our results reveal the heterogeneity of a virus-infected cell line It not only provides a transcriptome characterization of HeLa S3 cells at the single cell level, but is a demonstration of the power of single cell RNA-seq analysis of virally infected cells and cancers

    miR-486-3p Influences the Neurotoxicity of a-Synuclein by Targeting the SIRT2 Gene and the Polymorphisms at Target Sites Contributing to Parkinson’s Disease

    Get PDF
    Background/Aims: Increasing evidence suggests the important role of sirtuin 2 (SIRT2) in the pathology of Parkinson’s disease (PD). However, the association between potential functional polymorphisms in the SIRT2 gene and PD still needs to be identified. Exploring the molecular mechanism underlying this potential association could also provide novel insights into the pathogenesis of this disorder. Methods: Bioinformatics analysis and screening were first performed to find potential microRNAs (miRNAs) that could target the SIRT2 gene, and molecular biology experiments were carried out to further identify the regulation between miRNA and SIRT2 and characterize the pivotal role of miRNA in PD models. Moreover, a clinical case-control study was performed with 304 PD patients and 312 healthy controls from the Chinese Han population to identify the possible association of single nucleotide polymorphisms (SNPs) within the miRNA binding sites of SIRT2 with the risk of PD. Results: Here, we demonstrate that miR-486-3p binds to the 3’ UTR of SIRT2 and influences the translation of SIRT2. MiR-486-3p mimics can decrease the level of SIRT2 and reduce a-synuclein (α-syn)-induced aggregation and toxicity, which may contribute to the progression of PD. Interestingly, we find that a SNP, rs2241703, may disrupt miR-486-3p binding sites in the 3’ UTR of SIRT2, subsequently influencing the translation of SIRT2. Through the clinical case-control study, we further verify that rs2241703 is associated with PD risk in the Chinese Han population. Conclusion: The present study confirms that the rs2241703 polymorphism in the SIRT2 gene is associated with PD in the Chinese Han population, provides the potential mechanism of the susceptibility locus in determining PD risk and reveals a potential target of miRNA for the treatment and prevention of PD

    Design of wireless power transfer system with inputfilter

    Full text link
    corecore