8,114 research outputs found
Leading Undergraduate Students to Big Data Generation
People are facing a flood of data today. Data are being collected at
unprecedented scale in many areas, such as networking, image processing,
virtualization, scientific computation, and algorithms. The huge data nowadays
are called Big Data. Big data is an all encompassing term for any collection of
data sets so large and complex that it becomes difficult to process them using
traditional data processing applications. In this article, the authors present
a unique way which uses network simulator and tools of image processing to
train students abilities to learn, analyze, manipulate, and apply Big Data.
Thus they develop students handson abilities on Big Data and their critical
thinking abilities. The authors used novel image based rendering algorithm with
user intervention to generate realistic 3D virtual world. The learning outcomes
are significant
Document Clustering Based On Max-Correntropy Non-Negative Matrix Factorization
Nonnegative matrix factorization (NMF) has been successfully applied to many
areas for classification and clustering. Commonly-used NMF algorithms mainly
target on minimizing the distance or Kullback-Leibler (KL) divergence,
which may not be suitable for nonlinear case. In this paper, we propose a new
decomposition method by maximizing the correntropy between the original and the
product of two low-rank matrices for document clustering. This method also
allows us to learn the new basis vectors of the semantic feature space from the
data. To our knowledge, we haven't seen any work has been done by maximizing
correntropy in NMF to cluster high dimensional document data. Our experiment
results show the supremacy of our proposed method over other variants of NMF
algorithm on Reuters21578 and TDT2 databasets.Comment: International Conference of Machine Learning and Cybernetics (ICMLC)
201
Graph Regularized Non-negative Matrix Factorization By Maximizing Correntropy
Non-negative matrix factorization (NMF) has proved effective in many
clustering and classification tasks. The classic ways to measure the errors
between the original and the reconstructed matrix are distance or
Kullback-Leibler (KL) divergence. However, nonlinear cases are not properly
handled when we use these error measures. As a consequence, alternative
measures based on nonlinear kernels, such as correntropy, are proposed.
However, the current correntropy-based NMF only targets on the low-level
features without considering the intrinsic geometrical distribution of data. In
this paper, we propose a new NMF algorithm that preserves local invariance by
adding graph regularization into the process of max-correntropy-based matrix
factorization. Meanwhile, each feature can learn corresponding kernel from the
data. The experiment results of Caltech101 and Caltech256 show the benefits of
such combination against other NMF algorithms for the unsupervised image
clustering
Facile synthesis and enhanced visible light photocatalytic activity of N and Zr co-doped TiO2 nanostructures from nanotubular titanic acid precursors
Zr/N co-doped TiO2 nanostructures were successfully synthesized using
nanotubular titanic acid (NTA) as precursors by a facile wet chemical route and
subsequent calcination. These Zr/N-doped TiO2 nanostructures made by NTA
precursors show significantly enhanced visible light absorption and much higher
photocatalytic performance than the Zr/N-doped P25 TiO2 nanoparticles. Impacts
of Zr/N co-doping on the morphologies, optical properties, and photocatalytic
activities of the NTA precursor-based TiO2 were thoroughly investigated. The
origin of the enhanced visible light photocatalytic activity is discussed in
detail.Comment: 8 pages, 7 figure
Driving Scene Perception Network: Real-time Joint Detection, Depth Estimation and Semantic Segmentation
As the demand for enabling high-level autonomous driving has increased in
recent years and visual perception is one of the critical features to enable
fully autonomous driving, in this paper, we introduce an efficient approach for
simultaneous object detection, depth estimation and pixel-level semantic
segmentation using a shared convolutional architecture. The proposed network
model, which we named Driving Scene Perception Network (DSPNet), uses
multi-level feature maps and multi-task learning to improve the accuracy and
efficiency of object detection, depth estimation and image segmentation tasks
from a single input image. Hence, the resulting network model uses less than
850 MiB of GPU memory and achieves 14.0 fps on NVIDIA GeForce GTX 1080 with a
1024x512 input image, and both precision and efficiency have been improved over
combination of single tasks.Comment: 9 pages, 7 figures, WACV'1
Structure Preserving Large Imagery Reconstruction
With the explosive growth of web-based cameras and mobile devices, billions
of photographs are uploaded to the internet. We can trivially collect a huge
number of photo streams for various goals, such as image clustering, 3D scene
reconstruction, and other big data applications. However, such tasks are not
easy due to the fact the retrieved photos can have large variations in their
view perspectives, resolutions, lighting, noises, and distortions.
Fur-thermore, with the occlusion of unexpected objects like people, vehicles,
it is even more challenging to find feature correspondences and reconstruct
re-alistic scenes. In this paper, we propose a structure-based image completion
algorithm for object removal that produces visually plausible content with
consistent structure and scene texture. We use an edge matching technique to
infer the potential structure of the unknown region. Driven by the estimated
structure, texture synthesis is performed automatically along the estimated
curves. We evaluate the proposed method on different types of images: from
highly structured indoor environment to natural scenes. Our experimental
results demonstrate satisfactory performance that can be potentially used for
subsequent big data processing, such as image localization, object retrieval,
and scene reconstruction. Our experiments show that this approach achieves
favorable results that outperform existing state-of-the-art techniques
Enhancement of Visible-Light-Induced Photocurrent and Photocatalytic Activity of V and N Codoped TiO2 Nanotube Array Films
Highly ordered TiO2 nanotube arrays (TNAs) codoped with V and N were
synthesized by electrochemical anodization in association with hydrothermal
treatment. The samples were characterized by field emission scanning electron
microscopy, X-ray diffraction and X-ray photoelectron spectroscopy. The
photocurrent and photocatalytic activity of codoped TiO2 nanotube arrays were
investigated under visible light irradiation. Moreover, the production of
hydroxyl radicals on the surface of visible light-irradiated samples is
detected by a photoluminescence technique using terephthalic acid (TA) as a
probe molecule. It was found that the V+N co-doped TiO2 nanotube arrays showed
remarkably enhanced photocurrent and photocatalytic activity than undoped
sample due to the V and N codoping.Comment: 15 Pages, 6 figure
An Immersive Telepresence System using RGB-D Sensors and Head Mounted Display
We present a tele-immersive system that enables people to interact with each
other in a virtual world using body gestures in addition to verbal
communication. Beyond the obvious applications, including general online
conversations and gaming, we hypothesize that our proposed system would be
particularly beneficial to education by offering rich visual contents and
interactivity. One distinct feature is the integration of egocentric pose
recognition that allows participants to use their gestures to demonstrate and
manipulate virtual objects simultaneously. This functionality enables the
instructor to ef- fectively and efficiently explain and illustrate complex
concepts or sophisticated problems in an intuitive manner. The highly
interactive and flexible environment can capture and sustain more student
attention than the traditional classroom setting and, thus, delivers a
compelling experience to the students. Our main focus here is to investigate
possible solutions for the system design and implementation and devise
strategies for fast, efficient computation suitable for visual data processing
and network transmission. We describe the technique and experiments in details
and provide quantitative performance results, demonstrating our system can be
run comfortably and reliably for different application scenarios. Our
preliminary results are promising and demonstrate the potential for more
compelling directions in cyberlearning.Comment: IEEE International Symposium on Multimedia 201
- …
