347 research outputs found
DualTeacher: Bridging Coexistence of Unlabelled Classes for Semi-supervised Incremental Object Detection
In real-world applications, an object detector often encounters object
instances from new classes and needs to accommodate them effectively. Previous
work formulated this critical problem as incremental object detection (IOD),
which assumes the object instances of new classes to be fully annotated in
incremental data. However, as supervisory signals are usually rare and
expensive, the supervised IOD may not be practical for implementation. In this
work, we consider a more realistic setting named semi-supervised IOD (SSIOD),
where the object detector needs to learn new classes incrementally from a few
labelled data and massive unlabelled data without catastrophic forgetting of
old classes. A commonly-used strategy for supervised IOD is to encourage the
current model (as a student) to mimic the behavior of the old model (as a
teacher), but it generally fails in SSIOD because a dominant number of object
instances from old and new classes are coexisting and unlabelled, with the
teacher only recognizing a fraction of them. Observing that learning only the
classes of interest tends to preclude detection of other classes, we propose to
bridge the coexistence of unlabelled classes by constructing two teacher models
respectively for old and new classes, and using the concatenation of their
predictions to instruct the student. This approach is referred to as
DualTeacher, which can serve as a strong baseline for SSIOD with limited
resource overhead and no extra hyperparameters. We build various benchmarks for
SSIOD and perform extensive experiments to demonstrate the superiority of our
approach (e.g., the performance lead is up to 18.28 AP on MS-COCO). Our code is
available at \url{https://github.com/chuxiuhong/DualTeacher}
Cyclooxygenase-2 up-regulates vascular endothelial growth factor via a protein kinase C pathway in non-small cell lung cancer
Effects of grazing on C : N:P stoichiometry attenuate from soils to plants and insect herbivores in a semi-arid grassland
Understanding the processing of limiting nutrients among organisms is an important goal of community ecology. Less known is how human disturbances may alter the stoichiometric patterns among organisms from different trophic levels within communities. Here, we investigated how livestock grazing affects the C:N:P ecological stoichiometry of soils, plants (Leymus chinensis), and grasshoppers (Euchorthippus spp.) in a semi-arid grassland in northeastern China. We found that grazing significantly enhanced soil available N and leaf N content of the dominant L. chinensis grass by 15% and 20%, respectively. Grazing also reduced (soluble) C:N of L. chinensis leaves by 22%. However, grazing did not affect total C, N, or P contents nor their ratios in Euchorthippus grasshoppers. Our results reveal that the effects of grazing disturbances on elemental composition attenuated from lower to higher trophic levels. These findings support the theory that organisms from higher trophic levels have relatively stronger stoichiometric homeostasis compared to those from lower trophic levels. Moreover, grasshopper abundance dropped by 66% in the grazed areas, and they reduced the feeding time on their host L. chinensis grass by 43%, presumably to limit the intake of excess nitrogen from host plants. The energetic costs associated with the maintenance of elemental homeostasis likely reduced grasshopper individual performance and population abundance in the grazed areas. A comprehensive investigation of stoichiometric properties of organisms across trophic levels may enable a better understanding of the nature of species interactions, and facilitate predictions of the consequences of future environmental changes for a community organization.Peer reviewe
Spatial Pathomics Toolkit for Quantitative Analysis of Podocyte Nuclei with Histology and Spatial Transcriptomics Data in Renal Pathology
Podocytes, specialized epithelial cells that envelop the glomerular
capillaries, play a pivotal role in maintaining renal health. The current
description and quantification of features on pathology slides are limited,
prompting the need for innovative solutions to comprehensively assess diverse
phenotypic attributes within Whole Slide Images (WSIs). In particular,
understanding the morphological characteristics of podocytes, terminally
differentiated glomerular epithelial cells, is crucial for studying glomerular
injury. This paper introduces the Spatial Pathomics Toolkit (SPT) and applies
it to podocyte pathomics. The SPT consists of three main components: (1)
instance object segmentation, enabling precise identification of podocyte
nuclei; (2) pathomics feature generation, extracting a comprehensive array of
quantitative features from the identified nuclei; and (3) robust statistical
analyses, facilitating a comprehensive exploration of spatial relationships
between morphological and spatial transcriptomics features.The SPT successfully
extracted and analyzed morphological and textural features from podocyte
nuclei, revealing a multitude of podocyte morphomic features through
statistical analysis. Additionally, we demonstrated the SPT's ability to
unravel spatial information inherent to podocyte distribution, shedding light
on spatial patterns associated with glomerular injury. By disseminating the
SPT, our goal is to provide the research community with a powerful and
user-friendly resource that advances cellular spatial pathomics in renal
pathology. The implementation and its complete source code of the toolkit are
made openly accessible at https://github.com/hrlblab/spatial_pathomics
Antitumor activity and mechanisms of action of total glycosides from aerial part of Cimicifuga dahurica targeted against hepatoma
<p>Abstract</p> <p>Background</p> <p>Medicinal plant is a main source of cancer drug development. Some of the cycloartane triterpenoids isolated from the aerial part of <it>Cimicifuga dahurica </it>showed cytotoxicity in several cancer cell lines. It is of great interest to examine the antiproliferative activity and mechanisms of total triterpenoid glycosides of <it>C. dahurica </it>and therefore might eventually be useful in the prevention or treatment of Hepatoma.</p> <p>Methods</p> <p>The total glycosides from the aerial part (TGA) was extracted and its cytotoxicity was evaluated in HepG2 cells and primary cultured normal mouse hepatocytes by an MTT assay. Morphology observation, Annexin V-FITC/PI staining, cell cycle analysis and western blot were used to further elucidate the cytotoxic mechanism of TGA. Implanted mouse H<sub>22 </sub>hepatoma model was used to demonstrate the tumor growth inhibitory activity of TGA <it>in vivo</it>.</p> <p>Results</p> <p>The IC<sub>50 </sub>values of TGA in HepG2 and primary cultured normal mouse hepatocytes were 21 and 105 μg/ml, respectively. TGA induced G<sub>0</sub>/G<sub>1 </sub>cell cycle arrest at lower concentration (25 μg/ml), and triggered G<sub>2</sub>/M arrest and apoptosis at higher concentrations (50 and 100 μg/ml respectively). An increase in the ratio of Bax/Bcl-2 was implicated in TGA-induced apoptosis. In addition, TGA inhibited the growth of the implanted mouse H<sub>22 </sub>tumor in a dose-dependent manner.</p> <p>Conclusion</p> <p>TGA may potentially find use as a new therapy for the treatment of hepatoma.</p
Production of ginseng and its bioactive components in plant cell culture: Current technological and applied aspects
FABRICATING POLYMER SUPERHYDROPHILIC/SUPERHYDROPHOBIC SURFACES BY REPLICA-MOLDING METHOD USING CaCO<SUB>3</SUB> PARTICLES AS TEMPLATE
Study on Control System in Opto-electronic Tracking Based on Sliding Mode Variable Structure
- …
