623 research outputs found

    Persistence of extrahepatic hepatitis B virus DNA in the absence of detectable hepatic replication in patients with baboon liver transplants

    Get PDF
    The presence of hepatitis B virus (HBV) DNA in extrahepatic tissues has been well documented. Whether HBV DNA can persist in extrahepatic tissues for long periods of time in the absence of replication in the liver has not been determined previously. Recently, two patients with end‐stage liver disease secondary to chronic active HBV were treated with baboon liver xenotransplants as these animals are felt to be resistant to HBV infection. Multiple tissues from these two patients were examined for HBV DNA using polymerase chain reaction (PCR). HBV DNA was not detectable in four of five samples of the liver xenografts. A positive signal was observed in a single assay for one sample, but this sample was not positive in subsequent assays. HBV DNA was detected in peripheral blood lymphocytes, spleen, kidney, bone marrow, pancreas, lymph node, heart and small intestine. The level of HBV DNA in these tissues was too low for the detection of HBV DNA replicative intermediates by Southern hybridization; thus, it could not be determined whether the HBV DNA in these tissues represented actively replicating HBV in extrahepatic sites, integrated HBV sequences, HBV in infiltrating lymphocytes, or deposition of HBV immune complexes originating from the plasma. However, it is clear from this study that HBV DNA persisted in multiple tissues for 70 days after replication in the liver had ceased or at least was below the level of detection by PCR. © 1995 Wiley‐Liss, Inc. Copyright © 1995 Wiley‐Liss, Inc., A Wiley Compan

    Beyond the Fe-P-redox connection: preferential regeneration of phosphorus from organic matter as a key control on Baltic Sea nutrient cycles

    Get PDF
    Patterns of regeneration and burial of phosphorus (P) in the Baltic Sea are strongly dependent on redox conditions. Redox varies spatially along water depth gradients and temporally in response to the seasonal cycle and multidecadal hydrographic variability. Alongside the well-documented link between iron oxyhydroxide dissolution and release of P from Baltic Sea sediments, we show that preferential remineralization of P with respect to carbon (C) and nitrogen (N) during degradation of organic matter plays a key role in determining the surplus of bioavailable P in the water column. Preferential remineralization of P takes place both in the water column and upper sediments and its rate is shown to be redox-dependent, increasing as reducing conditions become more severe at greater water-depth in the deep basins. Existing Redfield-based biogeochemical models of the Baltic may therefore underestimate the imbalance between N and P availability for primary production, and hence the vulnerability of the Baltic to sustained eutrophication via the fixation of atmospheric N. However, burial of organic P is also shown to increase during multidecadal intervals of expanded hypoxia, due to higher net burial rates of organic matter around the margins of the deep basins. Such intervals may be characterized by basin-scale acceleration of all fluxes within the P cycle, including productivity, regeneration and burial, sustained by the relative accessibility of the water column P pool beneath a shallow halocline

    3D-XY critical fluctuations of the thermal expansivity in detwinned YBa2Cu3O7-d single crystals near optimal doping

    Full text link
    The strong coupling of superconductivity to the orthorhombic distortion in YBa2Cu3O7-d makes possible an analysis of the superconducting fluctuations without the necessity of subtracting any background. The present high-resolution capacitance dilatometry data unambiguously demonstrate the existence of critical, instead of Gaussian, fluctuations over a wide temperature region (+/- 10 K) around Tc. The values of the amplitude ratio A+/A-=0.9-1.1 and the leading scaling exponent |alpha|<0.018, determined via a least-squares fit of the data, are consistent with the 3D-XY universality class. Small deviations from pure 3D-XY behavior are discussed.Comment: 11 pages including three figure

    Impacts of flocculation on the distribution and diagenesis of iron in boreal estuarine sediments

    Get PDF
    Iron (Fe) plays a key role in sedimentary diagenetic processes in coastal systems, participating in various redox reactions and influencing the burial of organic carbon. Large amounts of Fe enter the marine environment from boreal river catchments associated with dissolved organic matter (DOM) and as colloidal Fe oxyhydroxides, principally ferrihydrite. However, the fate of this Fe pool in estuarine sediments has not been extensively studied. Here we show that flocculation processes along a salinity gradient in an estuary of the northern Baltic Sea efficiently transfer Fe and OM from the dissolved phase into particulate material that accumulates in the sediments. Flocculation of Fe and OM is partially decoupled. This is likely due to the presence of discrete colloidal ferrihydrite in the freshwater Fe pool, which responds differently from DOM to estuarine mixing. Further decoupling of Fe from OM occurs during sedimentation. While we observe a clear decline with distance offshore in the proportion of terrestrial material in the sedimentary particulate organic matter (POM) pool, the distribution of flocculated Fe in sediments is modulated by focusing effects. Labile Fe phases are most abundant at a deep site in the inner basin of the estuary, consistent with input from flocculation and subsequent focusing. The majority of the labile Fe pool is present as Fe (II), including both acid-volatile sulfur (AVS)-bound Fe and unsulfidized phases. The ubiquitous presence of unsulfidized Fe (II) throughout the sediment column suggests Fe (II)-OM complexes derived from reduction of flocculated Fe (III)-OM, while other Fe (II) phases are likely derived from the reduction of flocculated ferrihydrite. Depth-integrated rates of Fe (II) accumulation (AVS-Fe + unsulfidized Fe (II) + pyrite) for the period 1970-2015 are greater in the inner basin of the estuary with respect to a site further offshore, confirming higher rates of Fe reduction in near-shore areas. Mossbauer Fe-57 spectroscopy shows that refractory Fe is composed largely of superparamagnetic Fe (III), high-spin Fe (II) in silicates, and, at one station, also oxide minerals derived from past industrial activities. Our results highlight that the cycling of Fe in boreal estuarine environments is complex, and that the partial decoupling of Fe from OM during flocculation and sedimentation is key to understanding the role of Fe in sedimentary diagenetic processes in coastal areas.Peer reviewe

    Legacy effects of eutrophication on modern methane dynamics in a boreal estuary

    Get PDF
    Estuaries are important conduits between terrestrial and marine aquatic systems and function as hot spots in the aquatic methane cycle. Eutrophication and climate change may accelerate methane emissions from estuaries, causing positive feedbacks with global warming. Boreal regions will warm rapidly in the coming decades, increasing the need to understand methane cycling in these systems. In this 3-year study, we investigated seasonal and spatial variability of methane dynamics in a eutrophied boreal estuary, both in the water column and underlying sediments. The estuary and the connected archipelago were consistently a source of methane to the atmosphere, although the origin of emitted methane varied with distance offshore. In the estuary, the river was the primary source of atmospheric methane. In contrast, in the adjacent archipelago, sedimentary methanogenesis fueled by eutrophication over previous decades was the main source. Methane emissions to the atmosphere from the study area were highly variable and dependent on local hydrodynamics and environmental conditions. Despite evidence of highly active methanogenesis in the studied sediments, the vast majority of the upwards diffusive flux of methane was removed before it could escape to the atmosphere, indicating that oxidative filters are presently still functioning regardless of previous eutrophication and ongoing climate change.Peer reviewe

    Autochthonous organic matter promotes DNRA and suppresses N2O production in sediments of the coastal Baltic Sea

    Get PDF
    Coastal environments are nitrogen (N) removal hot spots, which regulate the amount of land-derived N reaching the open sea. However, mixing between freshwater and seawater creates gradients of inorganic N and bioavailable organic matter, which affect N cycling. In this study, we compare nitrate reduction processes between estuary and offshore archipelago environments in the coastal Baltic Sea. Denitrification rates were similar in both environments, despite lower nitrate and carbon concentrations in the offshore archipelago. However, DNRA (dissimilatory nitrate reduction to ammonium) rates were higher at the offshore archipelago stations, with a higher proportion of autochthonous carbon. The production rate and concentrations of the greenhouse gas nitrous oxide (N2O) were higher in the estuary, where nitrate concentrations and allochthonous carbon inputs are higher. These results indicate that the ratio between nitrate and autochthonous organic carbon governs the balance between N-removing denitrification and N-recycling DNRA, as well as the end-product of denitrification. As a result, a significant amount of the N removed in the estuary is released as N2O, while the offshore archipelago areas are characterized by efficient internal recycling of N. Our results challenge the current understanding of the role of these regions as filters of land-to-sea transfer of N.Peer reviewe

    Depth and intensity of the sulfate-methane transition zone control sedimentary molybdenum and uranium sequestration in a eutrophic low-salinity setting

    Get PDF
    Molybdenum (Mo) and uranium (U) contents in sedimentary archives are often used to reconstruct past changes in seafloor oxygenation. However, their sequestration processes are as yet poorly constrained in low-salinity coastal waters, which often suffer from anthropogenic eutrophication but only mild oxygen depletion. Due to the consequent lack of robust long-term paleo-redox reconstructions in such settings often characterized by a shallow front of dissolved sulfide accumulation within the sediment pore waters, inadequate understanding of the long-term drivers behind oxygen loss impedes cost-effective mitigation of this environmental problem. Here, we investigate the mechanisms of Mo and U sequestration in an oxic, low-salinity coastal setting in the northern Baltic Sea where anthropogenic eutrophication over the 20th century has resulted in formation of a shallow sulfate-methane transition zone (SMTZ) in the sediment column of this brackish-water basin. Our results demonstrate remarkably similar patterns for authigenic Mo and U sequestration, whereby the depth and intensity of the SMTZ exerts a first-order control on their solid-phase uptake. Sequential extraction analysis suggests that a large part of the authigenic Mo pool is hosted by refractory Fe-S phases such as pyrite and nanoscale FeMoS4, implying that the Fe-sulfide pathway is the dominating process of authigenic Mo scavenging. However, we also observe a pool of extremely labile Mo deep within the SMTZ, which might record an intermediate phase in authigenic Mo sequestration and/or partial switch to the organic matter (OM) pathway at low dissolved Fe levels. Authigenic U resides in acid-extractable and refractory phases, likely reflecting uptake into poorly crystalline monomeric U(IV) and crystalline uraninite, respectively. Similarly to Mo, authigenic U uptake is active at two fronts within the SMTZ, paralleled by increases in dissolved sulfide levels, suggesting coupling between sulfide production and U reduction. Our results imply that both Mo and U could provide viable proxies for mild bottom water deoxygenation in these settings, through the indirect link between seafloor oxygen conditions and the depth of SMTZ. Of these, Mo appears to more robustly capture variations in seafloor oxygen levels due to the significantly higher share of the authigenic pool. However, temporal resolution of these proxies is limited by the vertical offset between seafloor and the zone of authigenic uptake, and the superimposed character of the signal at a given depth due to vertical migrations of the SMTZ. These results have important implications for the use of Mo and U as paleo-redox proxies in other low-salinity coastal settings exposed to eutrophication.Peer reviewe
    corecore