5,765 research outputs found
Sprinklers: A Randomized Variable-Size Striping Approach to Reordering-Free Load-Balanced Switching
Internet traffic continues to grow exponentially, calling for switches that
can scale well in both size and speed. While load-balanced switches can achieve
such scalability, they suffer from a fundamental packet reordering problem.
Existing proposals either suffer from poor worst-case packet delays or require
sophisticated matching mechanisms. In this paper, we propose a new family of
stable load-balanced switches called "Sprinklers" that has comparable
implementation cost and performance as the baseline load-balanced switch, but
yet can guarantee packet ordering. The main idea is to force all packets within
the same virtual output queue (VOQ) to traverse the same "fat path" through the
switch, so that packet reordering cannot occur. At the core of Sprinklers are
two key innovations: a randomized way to determine the "fat path" for each VOQ,
and a way to determine its "fatness" roughly in proportion to the rate of the
VOQ. These innovations enable Sprinklers to achieve near-perfect load-balancing
under arbitrary admissible traffic. Proving this property rigorously using
novel worst-case large deviation techniques is another key contribution of this
work
Intensity-Dependent Enhancement of Saturable Absorption in PbS-Au4 Nanohybrid Composites: Evidence for Resonant Energy Transfer by Auger Recombination
Intensity-dependent enhancement of saturable absorption in a film of PbS-Au4
nanohybrid composites has been observed by femtosecond time-resolved transient
absorption measurement at 780 nm. The nonlinear absorption coefficient of
saturable absorption in PbS-Au4 nanohybrid composites is found to be dependent
on excitation irradiance and it is determined to be -2.9 cm/GW at 78 GW/cm2, an
enhancement of nearly fourfold in comparison with that of pure PbS quantum dots
(QDs). The enhancement is attributed to excitation of surface plasmon by
resonant energy transfer between PbS QDs and Au nanoparticles through Auger
recombination.Comment: 14 pages, 3 figures. Accepted in Appl. Phys. Lett. (2008
Measurements of the methane relaxation times for application to the infrared emission models of the upper atmospheres of outer planets and Titan
The 7.8 micrometer emission from the nu(sub 4) band of methane (CH4) is a regularly observed feature in the stratosphere of all the giant planets and Titan. On Jupiter, enhancements in this emission are associated with the infrared hot spots in the auroral zone. Attempts to model this phenomenon in particular, and to understand the role of methane in general, have been hampered in part by a lack of adequate laboratory measurements of the collisional relaxation times for the nu(sub 3) and nu(sub 4) levels over the appropriate temperature range. To provide this needed data, a series of laboratory experiments were initiated. In the experimental arrangement the nu(sub3) band of methane is pumped at 3.3 micrometers using a pulsed infrared source (Nd:YAG/dye laser system equipped with a wave-length extender). The radiative lifetime of the nu(sub 3) level (approximately 37 ms) is much shorter than the nu(sub 4) lifetime (approximately 390 ms); however, a rapid V-V energy transfer rate ensures that the nu(sub 4) level is substantially populated. The photoacoustic technique is used to acquire relaxation rate information. The experiments are performed using a low-temperature, low-pressure cell. Experimental apparatus and technique are described. In addition some of the experimental difficulties associated with making these measurements are discussed and some preliminary results are presented
Single Stranded DNA Induced Assembly of Gold Nanoparticles
The binding affinity of single stranded DNA (ssDNA) for gold nanoparticle surface is studied in this work. The data indicate that the strength of interaction between ssDNA and Au particle surface is closely related to the particle size, with smaller particles (5 nm) producing the most pronounced effects. From these experimental findings, a single stranded DNA (ssDNA) based method to assimilate 13 and 5 nm gold nanoparticles was developed, and verified by transmission electron microscopy (TEM).Singapore-MIT Alliance (SMA
Biological Routes to Gold Nanoplates
Much effort has been devoted to the synthesis of gold nanoparticles with different shapes, including the zero-dimensional nanospheres, one dimensional nanorods, and two-dimensional nanoplates. Compared to zero or one dimensional nanostructures, the synthesis of two-dimensional nanostructures in high yield has always been more involved, often requiring complex and time-consuming steps such as morphology transformation from the nanospheres, or the seeded growth process. Herein we report a high yield method for gold nanoplate synthesis using the extract of unicellular green alga Chlorella vulgaris, which can be carried out under ambient conditions. More than 90% of the total nanoparticle population is of the platelet morphology, surpassing the previously reported value of 45%. The control of the anisotropic growth of different planes; as well as the lateral size, has also been partially optimized.Singapore-MIT Alliance (SMA
Tubular Organization of SnO2 Nanocrystallites for Improved Lithium Ion Battery Anode Performace
Porous tin oxide nanotubes were obtained by vacuum infiltration of tin oxide nanoparticles into porous aluminum oxide membranes, followed by calcination. The porous tin oxide nanotube arrays so prepared were characterized by FE-SEM, TEM, HRTEM, and XRD. The nanotubes are open-ended, highly ordered with uniform cross-sections, diameters and wall thickness. The tin oxide nanotubes were evaluated as a substitute anode material for the lithium ion batteries. The tin oxide nanotube anode could be charged and discharged repeatedly, retaining a specific capacity of 525 mAh/g after 80 cycles. This capacity is significantly higher than the theoretical capacity of commercial graphite anode (372 mAh/g) and the cyclability is outstanding for a tin based electrode. The cyclability and capacities of the tin oxide nanotubes were also higher than their building blocks of solid tin oxide nanoparticles. A few factors accounting for the good cycling performance and high capacity of tin oxide nanotubes are suggested.Singapore-MIT Alliance (SMA
Template Synthesis of Tubular Sn-Based Nanostructures for Lithium Ion Storage
We report herewith the preparation of SnO₂ nanotubes with very good shape and size control, and with and without a carbon nanotube overlayer, The SnO₂-core/carbon-shell nanotubes are excellent reversible Li ion storage compounds combining the best features of carbon (cyclability) and SnO₂ (capacity) to deliver a high specific capacity (~540-600 mAh/g) simultaneous with good cyclability (0.0375% capacity loss per cycle).Singapore-MIT Alliance (SMA
Simple and Versatile Route to the Synthesis of Anisotropic Bimetallic Core-Shell and Monometallic Hollow Nanostructures: Ag (AgCl)-Pt Core-Shell Nanocubes and Pt Nanoboxes
We report herewith a simple and versatile route for the preparation of anisotropic Ag(AgCl)-Pt core-shell nanocubes and Pt nanoboxes. The core-shell nanocubes were first synthesized through the simultaneous reduction method and then treated with bis-(p-sulfonatophenyl)-phenylphosphine (BSPP) to remove the core materials. The changes in morphology, structure and composition during these syntheses were carefully followed. We found that, BSPP, in addition to being an effective silver oxidant, is also a good solubilizer for AgCl nanoparticles at room temperature. This allowed us to prepare pure Pt nanoboxes easily from the as-synthesized Ag (AgCl)-Pt nanocubes using a greatly simplified post-treatment for AgCl, which is the perennial impurity byproduct in the preparation of hollow nanostructures by the replacement reactions.Singapore-MIT Alliance (SMA
- …
