576 research outputs found

    Peptidomics of a single identified neuron reveals diversity of multiple neuropeptides with convergent actions on cellular excitability

    Get PDF
    In contrast to classical transmitters, the detailed structures and cellular and synaptic actions of neuropeptides are less well described. Peptide mass profiling of single identified neurons of the mollusc Lymnaea stagnalis indicated the presence of 17 abundant neuropeptides in the cardiorespiratory neuron, visceral dorsal 1 (VD1), and a subset of 14 peptides in its electrically coupled counterpart, right parietal dorsal 2. Altogether, based on this and previous work, we showed that the high number of peptides arises from the expression and processing of four distinct peptide precursor proteins, including a novel one. Second, we established a variety of posttranslational modifications of the generated peptides, including phosphorylation, disulphide linkage, glycosylation, hydroxylation, N-terminal pyro-glutamylation, and C-terminal amidation. Specific synapses between VD1 and its muscle targets were formed, and their synaptic physiology was investigated. Whole-cell voltage-clamp analysis of dissociated heart muscle cells revealed, as tested for a selection of representative family members and their modifications, that the peptides of VD1 exhibit convergent activation of a high-voltage-activated Ca current. Moreover, the differentially glycosylated and hydroxylated α2 peptides were more potent than the unmodified α2 peptide in enhancing these currents. Together, this study is the first to demonstrate that single neurons exhibit such a complex pattern of peptide gene expression, precursor processing, and differential peptide modifications along with a remarkable degree of convergence of neuromodulatory actions. This study thus underscores the importance of a detailed mass spectrometric analysis of neuronal peptide content and peptide modifications related to neuromodulatory function. Copyright © 2006 Society for Neuroscience

    Translationele OncoProteomics: Over vertalen van (fosfo)eiwit fingerprints

    Get PDF

    Translationele OncoProteomics: Over vertalen van (fosfo)eiwit fingerprints

    Get PDF

    Novel diagnostic cerebrospinal fluid biomarkers for pathologic subtypes of frontotemporal dementia identified by proteomics

    Get PDF
    Introduction: Reliable cerebrospinal fluid (CSF) biomarkers enabling identification of frontotemporal dementia (FTD) and its pathologic subtypes are lacking. Methods: Unbiased high-resolution mass spectrometry-based proteomics was applied on CSF of FTD patients with TAR DNA-binding protein 43 (TDP-43, FTD-TDP, n = 12) or tau pathology (FTD-tau, n = 8), and individuals with subjective memory complaints (SMC, n = 10). Validation was performed by applying enzyme-linked immunosorbent assay (ELISA) or enzymatic assays, when available, in a larger cohort (FTLD-TDP, n = 21, FTLD-tau, n = 10, SMC, n = 23) and in Alzheimer's disease (n = 20), dementia with Lewy bodies (DLB, n = 20), and vascular dementia (VaD, n = 18). Results: Of 1914 identified CSF proteins, 56 proteins were differentially regulated (fold change >1.2, P <.05) between the different patient groups: either between the two pathologic subtypes (10 proteins), or between at least one of these FTD subtypes and SMC (47 proteins). We confirmed the differential expression of YKL-40 by ELISA in a partly independent cohort. Furthermore, enzyme activity of catalase was decreased in FTD subtypes compared with SMC. Further validation in a larger cohort showed that the level of YKL-40 was twofold increased in both FTD pathologic subtypes compared with SMC and that the levels in FTLD-tau were higher compared to Alzheimer's dementia (AD), DLB, and VaD patients. Clinical validation furthermore showed that the catalase enzyme activity was decreased in the FTD subtypes compared to SMC, AD and DLB. Discussion: We identified promising CSF biomarkers for both FTD differential diagnosis and pathologic subtyping. YKL-40 and catalase enzyme activity should be validated further in similar pathology defined patient cohorts for their use for FTD diagnosis or treatment development

    Search for direct production of charginos and neutralinos in events with three leptons and missing transverse momentum in √s = 7 TeV pp collisions with the ATLAS detector

    Get PDF
    A search for the direct production of charginos and neutralinos in final states with three electrons or muons and missing transverse momentum is presented. The analysis is based on 4.7 fb−1 of proton–proton collision data delivered by the Large Hadron Collider and recorded with the ATLAS detector. Observations are consistent with Standard Model expectations in three signal regions that are either depleted or enriched in Z-boson decays. Upper limits at 95% confidence level are set in R-parity conserving phenomenological minimal supersymmetric models and in simplified models, significantly extending previous results

    Key biological processes driving metastatic spread of pancreatic cancer as identified by multi-omics studies.

    Get PDF
    Pancreatic ductal adenocarcinoma (PDAC) is an extremely aggressive malignancy, characterized by a high metastatic burden, already at the time of diagnosis. The metastatic potential of PDAC is one of the main reasons for the poor outcome next to lack of significant improvement in effective treatments in the last decade. Key mutated driver genes, such as activating KRAS mutations, are concordantly expressed in primary and metastatic tumors. However, the biology behind the metastatic potential of PDAC is not fully understood. Recently, large-scale omic approaches have revealed new mechanisms by which PDAC cells gain their metastatic potency. In particular, genomic studies have shown that multiple heterogeneous subclones reside in the primary tumor with different metastatic potential. The development of metastases may be correlated to a more mesenchymal transcriptomic subtype. However, for cancer cells to survive in a distant organ, metastatic sites need to be modulated into pre-metastatic niches. Proteomic studies identified the influence of exosomes on the Kuppfer cells in the liver, which could function to prepare this tissue for metastatic colonization. Phosphoproteomics adds an extra layer to the established omic techniques by unravelling key functional signaling. Future studies integrating results from these large-scale omic approaches will hopefully improve PDAC prognosis through identification of new therapeutic targets and patient selection tools. In this article, we will review the current knowledge on the biology of PDAC metastasis unravelled by large scale multi-omic approaches

    Measurement of D*+/- meson production in jets from pp collisions at sqrt(s) = 7 TeV with the ATLAS detector

    Get PDF
    This paper reports a measurement of D*+/- meson production in jets from proton-proton collisions at a center-of-mass energy of sqrt(s) = 7 TeV at the CERN Large Hadron Collider. The measurement is based on a data sample recorded with the ATLAS detector with an integrated luminosity of 0.30 pb^-1 for jets with transverse momentum between 25 and 70 GeV in the pseudorapidity range |eta| < 2.5. D*+/- mesons found in jets are fully reconstructed in the decay chain: D*+ -> D0pi+, D0 -> K-pi+, and its charge conjugate. The production rate is found to be N(D*+/-)/N(jet) = 0.025 +/- 0.001(stat.) +/- 0.004(syst.) for D*+/- mesons that carry a fraction z of the jet momentum in the range 0.3 < z < 1. Monte Carlo predictions fail to describe the data at small values of z, and this is most marked at low jet transverse momentum.Comment: 10 pages plus author list (22 pages total), 5 figures, 1 table, matches published version in Physical Review

    Search for supersymmetry in final states with jets, missing transverse momentum and one isolated lepton in sqrt{s} = 7 TeV pp collisions using 1 fb-1 of ATLAS data

    Get PDF
    We present an update of a search for supersymmetry in final states containing jets, missing transverse momentum, and one isolated electron or muon, using 1.04 fb^-1 of proton-proton collision data at sqrt{s} = 7 TeV recorded by the ATLAS experiment at the LHC in the first half of 2011. The analysis is carried out in four distinct signal regions with either three or four jets and variations on the (missing) transverse momentum cuts, resulting in optimized limits for various supersymmetry models. No excess above the standard model background expectation is observed. Limits are set on the visible cross-section of new physics within the kinematic requirements of the search. The results are interpreted as limits on the parameters of the minimal supergravity framework, limits on cross-sections of simplified models with specific squark and gluino decay modes, and limits on parameters of a model with bilinear R-parity violation.Comment: 18 pages plus author list (30 pages total), 9 figures, 4 tables, final version to appear in Physical Review

    Reducing heterotic M-theory to five dimensional supergravity on a manifold with boundary

    Get PDF
    This paper constructs the reduction of heterotic MM-theory in eleven dimensions to a supergravity model on a manifold with boundary in five dimensions using a Calabi-Yau three-fold. New results are presented for the boundary terms in the action and for the boundary conditions on the bulk fields. Some general features of dualisation on a manifold with boundary are used to explain the origin of some topological terms in the action. The effect of gaugino condensation on the fermion boundary conditions leads to a `twist' in the chirality of the gravitino which can provide an uplifting mechanism in the vacuum energy to cancel the cosmological constant after moduli stabilisation.Comment: 16 pages, RevTe
    corecore