441 research outputs found
Error Cascades in Observational Learning: An Experiment on the Chinos Game
The paper reports an experimental study based on a variant of the popular Chinos game, which is used as a simple but paradigmatic instance of observational learning. There are three players, arranged in sequence, each of whom wins a fixed price if she manages to guess the total number of coins lying in everybody’s hands. Our evidence shows that, despite the remarkable frequency of equilibrium outcomes, deviations from optimal play are also significant. And when such deviations occur, we find that, for any given player position, the probability of a mistake is increasing in the probability of a mistake of her predecessors. This is what we call an error cascade, which we rationalize by way of a simple model of “noisy equilibrium”.positional learning, error cascades
Functional Foods and Lifestyle Approaches for Diabetes Prevention and Management
Functional foods contain biologically active ingredients associated with physiological health benefits for preventing and managing chronic diseases, such as type 2 diabetes mellitus (T2DM). A regular consumption of functional foods may be associated with enhanced anti-oxidant, anti-inflammatory, insulin sensitivity, and anti-cholesterol functions, which are considered integral to prevent and manage T2DM. Components of the Mediterranean diet (MD)—such as fruits, vegetables, oily fish, olive oil, and tree nuts—serve as a model for functional foods based on their natural contents of nutraceuticals, including polyphenols, terpenoids, flavonoids, alkaloids, sterols, pigments, and unsaturated fatty acids. Polyphenols within MD and polyphenol-rich herbs—such as coffee, green tea, black tea, and yerba maté—have shown clinically-meaningful benefits on metabolic and microvascular activities, cholesterol and fasting glucose lowering, and anti-inflammation and anti-oxidation in high-risk and T2DM patients. However, combining exercise with functional food consumption can trigger and augment several metabolic and cardiovascular protective benefits, but it is under-investigated in people with T2DM and bariatric surgery patients. Detecting functional food benefits can now rely on an “omics” biological profiling of individuals’ molecular, genetics, transcriptomics, proteomics, and metabolomics, but is under-investigated in multi-component interventions. A personalized approach for preventing and managing T2DM should consider biological and behavioral models, and embed nutrition education as part of lifestyle diabetes prevention studies. Functional foods may provide additional benefits in such an approach
Pooling or fooling? An experiment on signaling
We compare two zero-sum versions of the so called Chinos Game, a traditional parlour game played in many countries. In one version, which we call Preemption Scenario, the first player who guesses right wins the prize. In the alternative version, called the Copycat Scenario, the last player who guesses right wins the prize. While in the Preemption Scenario there is a unique and fully revealing equilibrium, in the Copycat Scenario all equilibria have first movers pool (i.e. hide) their private information. Our experimental evidence shows, however, that in the latter case early movers do not pool but try to fool, i.e. to “lie” by systematically distorting behavior relative to equilibrium play. In fact, doing so they benefit, although the resulting gains diminish as the game proceeds. This highlights the point that, as players adjust their behavior off equilibrium, they also attempt to exploit the induced strategic uncertainty whenever the game allows for this possibility.Financial support from the Spanish Ministry of Economic Development (ECO2014-52345-P and ECO2015-65820-P), Generalitat Valenciana (Research Projects Grupos 3/086) and Instituto Valenciano de Investigaciones Económicas (IVIE) is gratefully acknowledged
On the evaluation of the suitability of the materials used to 3D print holographic acoustic lenses to correct transcranial focused ultrasound aberrations
The correction of transcranial focused ultrasound aberrations is a relevant
topic for enhancing various non-invasive medical treatments. Nowadays, the most
widely accepted method to improve focusing is the emission through
multi-element phased arrays; however, a new disruptive technology, based on 3D
printed holographic acoustic lenses, has recently been proposed overcoming the
spatial limitations of phased arrays due to the submillimetric precision of the
latest generation of 3D printers. This works aims to optimize this recent
solution; particularly, the preferred acoustic properties of the polymers used
for printing the lens are systematically analyzed, paying special attention to
the effect of p-wave speed and its relationship to the achievable voxel size of
3D printers. Results from simulations and experiments clearly show that there
are optimal ranges for lens thickness and p-wave speed, fairly independent of
the emitted frequency, the transducer aperture, or the transducer-target
distance, given a particular voxel sizeComment: 24 pages, 9 figure
Downregulation of clusterin mediates sensitivity to protein kinase inhibitors in breast cancer cells.
https://openpolicyfinder.jisc.ac.uk/id/publication/8720The efficacy of protein kinase inhibitors (PKIs) has been shown in clinical assays for cancer, but as isolated agents, they only have a modest effect. One of the most important characteristics of mitogen-activated PKIs is their ability to decrease the apoptotic threshold of cancer cells, sensitizing them to the action of other antiapoptotic agents. The secretory clusterin protein is an inhibitor of apoptosis with a cytoprotective function. We describe the use of clusterin-specific antisense oligonucleotides and siRNA to sensitize breast carcinoma cells to several PKIs. MCF-7 and MDA-MB-231 cells were treated with antisense oligonucleotide or siRNA to clusterin and the following PKIs: H-89, chelerythrine and genistein. The three inhibitors used in this study upregulated clusterin expression and treatments that included antisense oligonucleotide or siRNA to clusterin reduced the number of viable cells more effectively than did treatment with the drugs alone. Therefore, treatment with such combinations may benefit patients with breast cancer
Short communication. Soil development mediated by traditional practices shape the stand structure of Spanish juniper woodland
Producción CientíficaAim of study: Assessing the effect of soil development on the stand structure of a Spanish juniper forest traditionally shaped by livestock browsing and wood extraction.
Area of study: Berlanga de Duero (Soria, Castilla y León), Spain.
Material and Methods: A stand inventory served to record stand structure. Tree age, height, DBH, basal area, and overbark volume were determined in each plot. Results were pooled considering two well-differentiated degrees of soil evolution. One-way ANOVAs (and Tukey’s test) and regressions between growth parameters were performed to assess significant differences between growth performances on both types of soils.
Research highlights: Deeper soils yielded significant higher plant density and stand stock figures than stony shallower profiles despite the intense past livestock activity in the area; and single tree-size was also significantly greater. Non-significant differences were found for merchantable junipers age (≈120-160 years). Wood extraction and livestock browsing should be limited on shallower soils to allow soil and forest evolution; as well as to preserve the genetic pool better adapted to hardest growing conditions
Physico-mechanical properties of Spanish juniper wood considering the effect of heartwood formation and the presence of defects and imperfections
Producción CientíficaAim of study: Determining the main physical and mechanical properties of Spanish juniper wood from Soria (Spain) considering the effects of heartwood formation and the presence of defects and imperfections; and comparing the resulting characteristics with similar existing data for other regional softwood species of commercial interest.
Area of study: Berlanga de Duero (Soria, Castilla y León), Spain.
Material and Methods: Wood physico-mechanical performance was determined by Spanish UNE standards in order to provide proper comparisons to other regional softwood species. An individual tree representing average plot characteristics was selected in all eight 10 m radius circular plots that were established well-representing the heterogeneity of this woodland. The age of every tree was determined reading the number of growth rings at the base of each sampled tree. Every physico-mechanical property was assessed at least 4 times for every wood sample type (sapwood and heartwood, whether clear or with the presence of defects) of each tree. Two-way ANOVA was run to assess significant differences in the results. Post hoc all pairwise comparisons were performed using Tukey's test (p < 0.05).
Research highlights: Spanish juniper wood resulted harder than other regional commercial conifers, and showed semi-heavyweight heartwood and lightweight sapwood; whereas shrinkage figures remarked its great dimensional stability. The high presence of knots within heartwood made it even heavier, harder, and more resistant to compression parallel to grain. A commercial use of this rare precious wood may contribute to juniper forests preservation in the frame of forest sustainable management plans
On the Evaluation of the Suitability of the Materials Used to 3D Print Holographic Acoustic Lenses to Correct Transcranial Focused Ultrasound Aberrations
[EN] The correction of transcranial focused ultrasound aberrations is a relevant topic for enhancing various non-invasive medical treatments. Presently, the most widely accepted method to improve focusing is the emission through multi-element phased arrays; however, a new disruptive technology, based on 3D printed holographic acoustic lenses, has recently been proposed, overcoming the spatial limitations of phased arrays due to the submillimetric precision of the latest generation of 3D printers. This work aims to optimize this recent solution. Particularly, the preferred acoustic properties of the polymers used for printing the lenses are systematically analyzed, paying special attention to the effect of p-wave speed and its relationship to the achievable voxel size of 3D printers. Results from simulations and experiments clearly show that, given a particular voxel size, there are optimal ranges for lens thickness and p-wave speed, fairly independent of the emitted frequency, the transducer aperture, or the transducer-target distance.This work was partially supported by the Spanish "Ministerio de Economia y Competitividad" under the projects RTI2018-096904-B-I00 and TEC2016-80976-R. N.J. and S.J. acknowledge financial support from Generalitat Valenciana through Grants No. APOSTD/2017/042, No. ACIF/2017/045, and No. GV/2018/11. F.C. acknowledges financial support from Agencia Valenciana de la Innovacio through Grants No. INNCON00/18/9 and INNVAL10/19/016 and Generalitat Valenciana and European Regional Development Fund (Grant No. IDIFEDER/2018/022).Ferri García, M.; Bravo Plana-Sala, JM.; Redondo, J.; Jiménez-Gambín, S.; Jimenez, N.; Camarena Femenia, F.; Sánchez-Pérez, JV. (2019). On the Evaluation of the Suitability of the Materials Used to 3D Print Holographic Acoustic Lenses to Correct Transcranial Focused Ultrasound Aberrations. Polymers. 11(9):1-25. https://doi.org/10.3390/polym11091521S125119Ochiai, Y., Hoshi, T., & Rekimoto, J. (2014). Pixie dust. ACM Transactions on Graphics, 33(4), 1-13. doi:10.1145/2601097.2601118Kuo, L.-W., Chiu, L.-C., Lin, W.-L., Chen, J.-J., Dong, G.-C., Chen, S.-F., & Chen, G.-S. (2018). Development of an MRI-Compatible High-Intensity Focused Ultrasound Phased Array Transducer Dedicated for Breast Tumor Treatment. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 65(8), 1423-1432. doi:10.1109/tuffc.2018.2841418Xie, Y., Wang, W., Chen, H., Konneker, A., Popa, B.-I., & Cummer, S. A. (2014). Wavefront modulation and subwavelength diffractive acoustics with an acoustic metasurface. Nature Communications, 5(1). doi:10.1038/ncomms6553Xie, Y., Shen, C., Wang, W., Li, J., Suo, D., Popa, B.-I., … Cummer, S. A. (2016). Acoustic Holographic Rendering with Two-dimensional Metamaterial-based Passive Phased Array. Scientific Reports, 6(1). doi:10.1038/srep35437Brown, M. D., Nikitichev, D. I., Treeby, B. E., & Cox, B. T. (2017). Generating arbitrary ultrasound fields with tailored optoacoustic surface profiles. Applied Physics Letters, 110(9), 094102. doi:10.1063/1.4976942Maimbourg, G., Houdouin, A., Deffieux, T., Tanter, M., & Aubry, J.-F. (2018). 3D-printed adaptive acoustic lens as a disruptive technology for transcranial ultrasound therapy using single-element transducers. Physics in Medicine & Biology, 63(2), 025026. doi:10.1088/1361-6560/aaa037Zhang, J., Yang, Y., Zhu, B., Li, X., Jin, J., Chen, Z., … Zhou, Q. (2018). Multifocal point beam forming by a single ultrasonic transducer with 3D printed holograms. Applied Physics Letters, 113(24), 243502. doi:10.1063/1.5058079Ferri, M., Bravo, J. M., Redondo, J., & Sánchez-Pérez, J. V. (2019). Enhanced Numerical Method for the Design of 3-D-Printed Holographic Acoustic Lenses for Aberration Correction of Single-Element Transcranial Focused Ultrasound. Ultrasound in Medicine & Biology, 45(3), 867-884. doi:10.1016/j.ultrasmedbio.2018.10.022Jiménez-Gambín, S., Jiménez, N., Benlloch, J. M., & Camarena, F. (2019). Holograms to Focus Arbitrary Ultrasonic Fields through the Skull. Physical Review Applied, 12(1). doi:10.1103/physrevapplied.12.014016Clement, G. T., White, J., & Hynynen, K. (2000). Investigation of a large-area phased array for focused ultrasound surgery through the skull. Physics in Medicine and Biology, 45(4), 1071-1083. doi:10.1088/0031-9155/45/4/319Elias, W. J., Huss, D., Voss, T., Loomba, J., Khaled, M., Zadicario, E., … Wintermark, M. (2013). A Pilot Study of Focused Ultrasound Thalamotomy for Essential Tremor. New England Journal of Medicine, 369(7), 640-648. doi:10.1056/nejmoa1300962Burgess, A., Ayala-Grosso, C. A., Ganguly, M., Jordão, J. F., Aubert, I., & Hynynen, K. (2011). Targeted Delivery of Neural Stem Cells to the Brain Using MRI-Guided Focused Ultrasound to Disrupt the Blood-Brain Barrier. PLoS ONE, 6(11), e27877. doi:10.1371/journal.pone.0027877Choi, J. J., Pernot, M., Small, S. A., & Konofagou, E. E. (2007). Noninvasive, transcranial and localized opening of the blood-brain barrier using focused ultrasound in mice. Ultrasound in Medicine & Biology, 33(1), 95-104. doi:10.1016/j.ultrasmedbio.2006.07.018Aubry, J.-F., Tanter, M., Pernot, M., Thomas, J.-L., & Fink, M. (2003). Experimental demonstration of noninvasive transskull adaptive focusing based on prior computed tomography scans. The Journal of the Acoustical Society of America, 113(1), 84-93. doi:10.1121/1.1529663Jolesz, F. A., & McDannold, N. J. (2014). Magnetic Resonance–Guided Focused Ultrasound. Neurologic Clinics, 32(1), 253-269. doi:10.1016/j.ncl.2013.07.008Fry, F. J., & Goss, S. A. (1980). Further studies of the transkull transmission of an intense focused ultrasonic beam: Lesion production at 500 kHz. Ultrasound in Medicine & Biology, 6(1), 33-38. doi:10.1016/0301-5629(80)90061-7Coluccia, D., Figueiredo, C. A., Wu, M. Y., Riemenschneider, A. N., Diaz, R., Luck, A., … Rutka, J. T. (2018). Enhancing glioblastoma treatment using cisplatin-gold-nanoparticle conjugates and targeted delivery with magnetic resonance-guided focused ultrasound. Nanomedicine: Nanotechnology, Biology and Medicine, 14(4), 1137-1148. doi:10.1016/j.nano.2018.01.021McDannold, N., Clement, G. T., Black, P., Jolesz, F., & Hynynen, K. (2010). Transcranial Magnetic Resonance Imaging– Guided Focused Ultrasound Surgery of Brain Tumors. Neurosurgery, 66(2), 323-332. doi:10.1227/01.neu.0000360379.95800.2fMeng, Y., Volpini, M., Black, S., Lozano, A. M., Hynynen, K., & Lipsman, N. (2017). Focused ultrasound as a novel strategy for Alzheimer disease therapeutics. Annals of Neurology, 81(5), 611-617. doi:10.1002/ana.24933Magara, A., Bühler, R., Moser, D., Kowalski, M., Pourtehrani, P., & Jeanmonod, D. (2014). First experience with MR-guided focused ultrasound in the treatment of Parkinson’s disease. Journal of Therapeutic Ultrasound, 2(1). doi:10.1186/2050-5736-2-11Hynynen, K., McDannold, N., Vykhodtseva, N., & Jolesz, F. A. (2001). Noninvasive MR Imaging–guided Focal Opening of the Blood-Brain Barrier in Rabbits. Radiology, 220(3), 640-646. doi:10.1148/radiol.2202001804Kinoshita, M., McDannold, N., Jolesz, F. A., & Hynynen, K. (2006). Noninvasive localized delivery of Herceptin to the mouse brain by MRI-guided focused ultrasound-induced blood-brain barrier disruption. Proceedings of the National Academy of Sciences, 103(31), 11719-11723. doi:10.1073/pnas.0604318103Baseri, B., Choi, J. J., Deffieux, T., Samiotaki, G., Tung, Y.-S., Olumolade, O., … Konofagou, E. E. (2012). Activation of signaling pathways following localized delivery of systemically administered neurotrophic factors across the blood–brain barrier using focused ultrasound and microbubbles. Physics in Medicine and Biology, 57(7), N65-N81. doi:10.1088/0031-9155/57/7/n65Alonso, A., Reinz, E., Leuchs, B., Kleinschmidt, J., Fatar, M., Geers, B., … Meairs, S. (2013). Focal Delivery of AAV2/1-transgenes Into the Rat Brain by Localized Ultrasound-induced BBB Opening. Molecular Therapy - Nucleic Acids, 2, e73. doi:10.1038/mtna.2012.64Wang, S., Olumolade, O. O., Sun, T., Samiotaki, G., & Konofagou, E. E. (2014). Noninvasive, neuron-specific gene therapy can be facilitated by focused ultrasound and recombinant adeno-associated virus. Gene Therapy, 22(1), 104-110. doi:10.1038/gt.2014.91Guthkelch, A. N., Carter, L. P., Cassady, J. R., Hynynen, K. H., Iacono, R. P., Johnson, P. C., … Steal, B. (1991). Treatment of malignant brain tumors with focused ultrasound hyperthermia and radiation: results of a phase I trial. Journal of Neuro-Oncology, 10(3). doi:10.1007/bf00177540Marquet, F., Tung, Y.-S., Teichert, T., Ferrera, V. P., & Konofagou, E. E. (2012). Feasibility study of a single-element transcranial focused ultrasound system for blood-brain barrier opening. doi:10.1063/1.4757340Thomas, J.-L., & Fink, M. A. (1996). Ultrasonic beam focusing through tissue inhomogeneities with a time reversal mirror: application to transskull therapy. IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, 43(6), 1122-1129. doi:10.1109/58.542055Sun, J., & Hynynen, K. (1998). Focusing of therapeutic ultrasound through a human skull: A numerical study. The Journal of the Acoustical Society of America, 104(3), 1705-1715. doi:10.1121/1.424383Clement, G. T., & Hynynen, K. (2002). A non-invasive method for focusing ultrasound through the human skull. Physics in Medicine and Biology, 47(8), 1219-1236. doi:10.1088/0031-9155/47/8/301Marsac, L., Chauvet, D., La Greca, R., Boch, A.-L., Chaumoitre, K., Tanter, M., & Aubry, J.-F. (2017). Ex vivo optimisation of a heterogeneous speed of sound model of the human skull for non-invasive transcranial focused ultrasound at 1 MHz. International Journal of Hyperthermia, 33(6), 635-645. doi:10.1080/02656736.2017.1295322Pichardo, S., Sin, V. W., & Hynynen, K. (2010). Multi-frequency characterization of the speed of sound and attenuation coefficient for longitudinal transmission of freshly excised human skulls. Physics in Medicine and Biology, 56(1), 219-250. doi:10.1088/0031-9155/56/1/014Connor, C. W., & Hynynen, K. (2004). Patterns of Thermal Deposition in the Skull During Transcranial Focused Ultrasound Surgery. IEEE Transactions on Biomedical Engineering, 51(10), 1693-1706. doi:10.1109/tbme.2004.831516Connor, C. W., Clement, G. T., & Hynynen, K. (2002). A unified model for the speed of sound in cranial bone based on genetic algorithm optimization. Physics in Medicine and Biology, 47(22), 3925-3944. doi:10.1088/0031-9155/47/22/302Clement, G. T., White, P. J., & Hynynen, K. (2004). Enhanced ultrasound transmission through the human skull using shear mode conversion. The Journal of the Acoustical Society of America, 115(3), 1356-1364. doi:10.1121/1.1645610Pinton, G., Aubry, J.-F., Bossy, E., Muller, M., Pernot, M., & Tanter, M. (2011). Attenuation, scattering, and absorption of ultrasound in the skull bone. Medical Physics, 39(1), 299-307. doi:10.1118/1.3668316Hughes, A., Huang, Y., Pulkkinen, A., Schwartz, M. L., Lozano, A. M., & Hynynen, K. (2016). A numerical study on the oblique focus in MR-guided transcranial focused ultrasound. Physics in Medicine and Biology, 61(22), 8025-8043. doi:10.1088/0031-9155/61/22/8025Jiménez, N., Camarena, F., Redondo, J., Sánchez-Morcillo, V., Hou, Y., & Konofagou, E. E. (2016). Time-Domain Simulation of Ultrasound Propagation in a Tissue-Like Medium Based on the Resolution of the Nonlinear Acoustic Constitutive Relations. Acta Acustica united with Acustica, 102(5), 876-892. doi:10.3813/aaa.919002ULTEM 1010 ® Resinhttp://www.webcitation.org/78VUOqfizProperties of Selected Fibreshttp://www.webcitation.org/78VWv9U9WFused Deposition Modeling Materialshttp://www.webcitation.org/78VWYf9fE3DXTECH Advanced Materials. Tech Data Sheets & SDShttp://www.webcitation.org/78VW28G0RThe Material Selection Platform. Young’s Modulushttp://www.webcitation.org/78VWuJN2ABurr, G. W., & Farjadpour, A. (2005). Balancing accuracy against computation time: 3D FDTD for nanophotonics device optimization. Photonic Crystal Materials and Devices III. doi:10.1117/12.590732Canney, M. S., Bailey, M. R., Crum, L. A., Khokhlova, V. A., & Sapozhnikov, O. A. (2008). Acoustic characterization of high intensity focused ultrasound fields: A combined measurement and modeling approach. The Journal of the Acoustical Society of America, 124(4), 2406-2420. doi:10.1121/1.2967836O’Neil, H. T. (1949). Theory of Focusing Radiators. The Journal of the Acoustical Society of America, 21(5), 516-526. doi:10.1121/1.1906542Ultrasonic Test Equipment. HIGH Z Ultrasonic Couplanthttp://www.webcitation.org/78VUxlDe
Estimating the resilience of, and targets for, a transport system using expert opinion
To ensure that transport infrastructure provides acceptable levels of service with respect to extreme events, the resilience of the infrastructure needs to be estimated and targets for it need to be set. Recent work in the European research project Future Proofing Strategies for Resilient Transport Networks against Extreme Events (Foresee) has shown how this can be done in situations with a wide range of available data, time frames for the estimation and expertise. This paper provides an example of how an infrastructure manager can use the guideline to estimate the resilience of, and set resilience targets for, an example transport system in a relatively short period of time, even in the case of limited expertise in all the relevant areas and limited knowledge and information on all the basic input variables. The example is fictive but realistic. It is based on a transport system consisting of a section of the A16 highway, in Italy, where a potential landslide could discharge enough material to damage road sections and bridges. The resilience is estimated using resilience indicators with differentiated weights, and the resilience targets are set using cost–benefit analysis, to identify the indicators to be improved first.This work has received funding from the EU Horizon 2020 research and innovation programme under grant agreement number 769373 (Foresee project). This paper reflects only the authors’ views. The European Commission and Innovation and Networks Executive Agency are not responsible for any use that may be made of the information contained therein
Reflection of sound by Sonic Crystals: an application to the aerospace engineering
[EN] From the acoustical point of view one of the most extreme events is the lift-off of a rocket. In such events, an enormous amount of energy is liberated in the form of acoustic waves that are reflected in the launch pad, coming back over the rocket and affecting both the rocket and the load contained in the fairing. Here we propose a possible solution to reduce the sound pressure level in the area of the spacecraft-launcher: placing structures based on Sonic Crystals (SCs) at the launch pad to control waves reflecting on it. In this work preliminary reults, in linear regime and without considering dissipation, about the use of SCs to control the reflected waves in a broadband range of frequencies are presented. This proof of concept is experimentally tested in a sub-scale system, that works at ultrasonic frequencies in water. Different types of SCs and different geometries of the reflecting backing are tested. In particular, geometries that mimic that of the VEGA's launch pad of the European Space Agency (ESA).Authors acknowledge the support of the European Space Agency under contract "Sonic Crystals For Noise Reduction At The Launch Pad" ESA ITT 1-7094 (ITI) and the 441-2015 Co-Sponsored PhD "Acoustic Reduction Methods for the Launch Pad". The work was supported by Spanish Ministry of Economy and Innovation (MINECO) and European Union FEDER through project FIS2015-65998-C2-2García-Raffi, LM.; Salmerón-Contreras, LJ.; Herrero-Durá, I.; Picó Vila, R.; Redondo, J.; Sánchez Morcillo, VJ.; Cebrecos, A.... (2016). Reflection of sound by Sonic Crystals: an application to the aerospace engineering. Universidade do Porto. 1-10. http://hdl.handle.net/10251/181078S11
- …
