1,840 research outputs found
Novel SαS PDF approximations and their applications in wireless signal detection
Three new approximations to the probability density function (PDF) of the symmetric alpha stable (SαS) distribution are proposed. The first two approximations use rational functions while the third approximation uses power functions. Using these approximations, new detectors for signals in symmetric alpha stable noise are also derived. Numerical results show that all these new approximations have good accuracies. Numerical results also show that the new detectors based on these approximations outperform the existing detectors, especially when the characteristic exponent of the symmetric alpha stable distribution is small
A Scalable Hybrid MAC Protocol for Massive M2M Networks
In Machine to Machine (M2M) networks, a robust Medium Access Control (MAC)
protocol is crucial to enable numerous machine-type devices to concurrently
access the channel. Most literatures focus on developing simplex (reservation
or contention based)MAC protocols which cannot provide a scalable solution for
M2M networks with large number of devices. In this paper, a frame-based Hybrid
MAC scheme, which consists of a contention period and a transmission period, is
proposed for M2M networks. In the proposed scheme, the devices firstly contend
the transmission opportunities during the contention period, only the
successful devices will be assigned a time slot for transmission during the
transmission period. To balance the tradeoff between the contention and
transmission period in each frame, an optimization problem is formulated to
maximize the system throughput by finding the optimal contending probability
during contention period and optimal number of devices that can transmit during
transmission period. A practical hybrid MAC protocol is designed to implement
the proposed scheme. The analytical and simulation results demonstrate the
effectiveness of the proposed Hybrid MAC protocol
Game among Interdependent Networks: The Impact of Rationality on System Robustness
Many real-world systems are composed of interdependent networks that rely on
one another. Such networks are typically designed and operated by different
entities, who aim at maximizing their own payoffs. There exists a game among
these entities when designing their own networks. In this paper, we study the
game investigating how the rational behaviors of entities impact the system
robustness. We first introduce a mathematical model to quantify the interacting
payoffs among varying entities. Then we study the Nash equilibrium of the game
and compare it with the optimal social welfare. We reveal that the cooperation
among different entities can be reached to maximize the social welfare in
continuous game only when the average degree of each network is constant.
Therefore, the huge gap between Nash equilibrium and optimal social welfare
generally exists. The rationality of entities makes the system inherently
deficient and even renders it extremely vulnerable in some cases. We analyze
our model for two concrete systems with continuous strategy space and discrete
strategy space, respectively. Furthermore, we uncover some factors (such as
weakening coupled strength of interdependent networks, designing suitable
topology dependency of the system) that help reduce the gap and the system
vulnerability
Analysis of a concentric coplanar capacitive sensor using a spectral domain approach
Previously, concentric coplanar capacitive sensors have been developed to quantitatively characterize the permittivity or thickness of one layer in multi‐layered dielectrics. Electrostatic Green’s functions due to a point source at the surface of one‐ to three‐layered test‐pieces were first derived in the spectral domain, under the Hankel transform. Green’s functions in the spatial domain were then obtained by using the appropriate inverse transform. Utilizing the spatial domain Green’s functions, the sensor surface charge density was calculated using the method of moments and the sensor capacitance was calculated from its surface charge. In the current work, the spectral domain Green’s functions are used to derive directly the integral equation for the sensor surface charge density in the spectral domain, using Parseval’s theorem. Then the integral equation is discretized to form matrix equations using the method of moments. It is shown that the spatial domain approach is more computationally efficient, whereas the Green’s function derivation and numerical implementation are easier for the spectral domain approach
A Tensor-Based Framework for Studying Eigenvector Multicentrality in Multilayer Networks
Centrality is widely recognized as one of the most critical measures to
provide insight in the structure and function of complex networks. While
various centrality measures have been proposed for single-layer networks, a
general framework for studying centrality in multilayer networks (i.e.,
multicentrality) is still lacking. In this study, a tensor-based framework is
introduced to study eigenvector multicentrality, which enables the
quantification of the impact of interlayer influence on multicentrality,
providing a systematic way to describe how multicentrality propagates across
different layers. This framework can leverage prior knowledge about the
interplay among layers to better characterize multicentrality for varying
scenarios. Two interesting cases are presented to illustrate how to model
multilayer influence by choosing appropriate functions of interlayer influence
and design algorithms to calculate eigenvector multicentrality. This framework
is applied to analyze several empirical multilayer networks, and the results
corroborate that it can quantify the influence among layers and multicentrality
of nodes effectively.Comment: 57 pages, 10 figure
- …
