470 research outputs found
A note on the data-driven capacity of P2P networks
We consider two capacity problems in P2P networks. In the first one, the
nodes have an infinite amount of data to send and the goal is to optimally
allocate their uplink bandwidths such that the demands of every peer in terms
of receiving data rate are met. We solve this problem through a mapping from a
node-weighted graph featuring two labels per node to a max flow problem on an
edge-weighted bipartite graph. In the second problem under consideration, the
resource allocation is driven by the availability of the data resource that the
peers are interested in sharing. That is a node cannot allocate its uplink
resources unless it has data to transmit first. The problem of uplink bandwidth
allocation is then equivalent to constructing a set of directed trees in the
overlay such that the number of nodes receiving the data is maximized while the
uplink capacities of the peers are not exceeded. We show that the problem is
NP-complete, and provide a linear programming decomposition decoupling it into
a master problem and multiple slave subproblems that can be resolved in
polynomial time. We also design a heuristic algorithm in order to compute a
suboptimal solution in a reasonable time. This algorithm requires only a local
knowledge from nodes, so it should support distributed implementations.
We analyze both problems through a series of simulation experiments featuring
different network sizes and network densities. On large networks, we compare
our heuristic and its variants with a genetic algorithm and show that our
heuristic computes the better resource allocation. On smaller networks, we
contrast these performances to that of the exact algorithm and show that
resource allocation fulfilling a large part of the peer can be found, even for
hard configuration where no resources are in excess.Comment: 10 pages, technical report assisting a submissio
Training Curricula for Open Domain Answer Re-Ranking
In precision-oriented tasks like answer ranking, it is more important to rank
many relevant answers highly than to retrieve all relevant answers. It follows
that a good ranking strategy would be to learn how to identify the easiest
correct answers first (i.e., assign a high ranking score to answers that have
characteristics that usually indicate relevance, and a low ranking score to
those with characteristics that do not), before incorporating more complex
logic to handle difficult cases (e.g., semantic matching or reasoning). In this
work, we apply this idea to the training of neural answer rankers using
curriculum learning. We propose several heuristics to estimate the difficulty
of a given training sample. We show that the proposed heuristics can be used to
build a training curriculum that down-weights difficult samples early in the
training process. As the training process progresses, our approach gradually
shifts to weighting all samples equally, regardless of difficulty. We present a
comprehensive evaluation of our proposed idea on three answer ranking datasets.
Results show that our approach leads to superior performance of two leading
neural ranking architectures, namely BERT and ConvKNRM, using both pointwise
and pairwise losses. When applied to a BERT-based ranker, our method yields up
to a 4% improvement in MRR and a 9% improvement in P@1 (compared to the model
trained without a curriculum). This results in models that can achieve
comparable performance to more expensive state-of-the-art techniques.Comment: Accepted at SIGIR 2020 (long
Post-transcriptional regulation of Estrogen Receptor-α by miR-17-92 interaction and LMTK3 phosphorylation in Breast Cancer
Estrogen receptor-α (ERα) is expressed in two-thirds of BCs and is a well-known prognostic and predictive marker. For this reason it is one of the most studied proteins in BC. To understand how ERα positive BC develops, it is crucial to investigate both how this protein is regulated and which genes are modulated by it. MicroRNAs (miRNAs) control gene expression post-transcriptionally by interacting through sequence complementarity to their target transcripts. Through a microarray approach, we identified the subset of miRNAs modulated by ERα, that include up-regulation of miRNAs derived from the processing of two paralogous primary (pri-) transcripts, pri-miR-17-92 and pri-miR-106a-363. Characterisation of the miR-17-92 locus confirmed that the ERα target protein c-MYC binds its promoter in an estrogen-dependent manner. These findings indicated that miRNAs derived from these pri-miRNAs (miR-18a, miR-19b and miR-20b) target and down-regulate ERα, whilst a subset of pri-miRNA-derived mature miRNAs inhibit protein translation of the ERα transcriptional p160 co-activator, AIB1. Therefore, different subsets of the miRNAs identified act as part of a negative autoregulatory feedback loop. We observed that levels of pri-miR-17-92 increase earlier than the mature miRNAs derived from it, implicating precursor cleavage modulation after transcription. Pri-mir-17-92 is immediately cleaved by Drosha to pre-miR-18a, indicating that its regulation occurs during the formation of the mature molecule from the precursors.
Furthermore, we wanted to explore the new kinases that regulate the ERα activity. Thereby, we performed kinome screening (by RNAi technologies) to determine kinases that regulate ERα in MCF-7 BC cells and identified a novel kinase, LMTK3, which acts as positive regulator of ERα's transcriptional activity. This could be a new therapeutic target and/or a novel biomarker for BC, although further studies are required to validate this. Together, these studies identify new transcriptional and translational factors that regulate ERα expression in BC.Open Acces
Canvass: a crowd-sourced, natural-product screening library for exploring biological space
NCATS thanks Dingyin Tao for assistance with compound characterization. This research was supported by the Intramural Research Program of the National Center for Advancing Translational Sciences, National Institutes of Health (NIH). R.B.A. acknowledges support from NSF (CHE-1665145) and NIH (GM126221). M.K.B. acknowledges support from NIH (5R01GM110131). N.Z.B. thanks support from NIGMS, NIH (R01GM114061). J.K.C. acknowledges support from NSF (CHE-1665331). J.C. acknowledges support from the Fogarty International Center, NIH (TW009872). P.A.C. acknowledges support from the National Cancer Institute (NCI), NIH (R01 CA158275), and the NIH/National Institute of Aging (P01 AG012411). N.K.G. acknowledges support from NSF (CHE-1464898). B.C.G. thanks the support of NSF (RUI: 213569), the Camille and Henry Dreyfus Foundation, and the Arnold and Mabel Beckman Foundation. C.C.H. thanks the start-up funds from the Scripps Institution of Oceanography for support. J.N.J. acknowledges support from NIH (GM 063557, GM 084333). A.D.K. thanks the support from NCI, NIH (P01CA125066). D.G.I.K. acknowledges support from the National Center for Complementary and Integrative Health (1 R01 AT008088) and the Fogarty International Center, NIH (U01 TW00313), and gratefully acknowledges courtesies extended by the Government of Madagascar (Ministere des Eaux et Forets). O.K. thanks NIH (R01GM071779) for financial support. T.J.M. acknowledges support from NIH (GM116952). S.M. acknowledges support from NIH (DA045884-01, DA046487-01, AA026949-01), the Office of the Assistant Secretary of Defense for Health Affairs through the Peer Reviewed Medical Research Program (W81XWH-17-1-0256), and NCI, NIH, through a Cancer Center Support Grant (P30 CA008748). K.N.M. thanks the California Department of Food and Agriculture Pierce's Disease and Glassy Winged Sharpshooter Board for support. B.T.M. thanks Michael Mullowney for his contribution in the isolation, elucidation, and submission of the compounds in this work. P.N. acknowledges support from NIH (R01 GM111476). L.E.O. acknowledges support from NIH (R01-HL25854, R01-GM30859, R0-1-NS-12389). L.E.B., J.K.S., and J.A.P. thank the NIH (R35 GM-118173, R24 GM-111625) for research support. F.R. thanks the American Lebanese Syrian Associated Charities (ALSAC) for financial support. I.S. thanks the University of Oklahoma Startup funds for support. J.T.S. acknowledges support from ACS PRF (53767-ND1) and NSF (CHE-1414298), and thanks Drs. Kellan N. Lamb and Michael J. Di Maso for their synthetic contribution. B.S. acknowledges support from NIH (CA78747, CA106150, GM114353, GM115575). W.S. acknowledges support from NIGMS, NIH (R15GM116032, P30 GM103450), and thanks the University of Arkansas for startup funds and the Arkansas Biosciences Institute (ABI) for seed money. C.R.J.S. acknowledges support from NIH (R01GM121656). D.S.T. thanks the support of NIH (T32 CA062948-Gudas) and PhRMA Foundation to A.L.V., NIH (P41 GM076267) to D.S.T., and CCSG NIH (P30 CA008748) to C.B. Thompson. R.E.T. acknowledges support from NIGMS, NIH (GM129465). R.J.T. thanks the American Cancer Society (RSG-12-253-01-CDD) and NSF (CHE1361173) for support. D.A.V. thanks the Camille and Henry Dreyfus Foundation, the National Science Foundation (CHE-0353662, CHE-1005253, and CHE-1725142), the Beckman Foundation, the Sherman Fairchild Foundation, the John Stauffer Charitable Trust, and the Christian Scholars Foundation for support. J.W. acknowledges support from the American Cancer Society through the Research Scholar Grant (RSG-13-011-01-CDD). W.M.W.acknowledges support from NIGMS, NIH (GM119426), and NSF (CHE1755698). A.Z. acknowledges support from NSF (CHE-1463819). (Intramural Research Program of the National Center for Advancing Translational Sciences, National Institutes of Health (NIH); CHE-1665145 - NSF; CHE-1665331 - NSF; CHE-1464898 - NSF; RUI: 213569 - NSF; CHE-1414298 - NSF; CHE1361173 - NSF; CHE1755698 - NSF; CHE-1463819 - NSF; GM126221 - NIH; 5R01GM110131 - NIH; GM 063557 - NIH; GM 084333 - NIH; R01GM071779 - NIH; GM116952 - NIH; DA045884-01 - NIH; DA046487-01 - NIH; AA026949-01 - NIH; R01 GM111476 - NIH; R01-HL25854 - NIH; R01-GM30859 - NIH; R0-1-NS-12389 - NIH; R35 GM-118173 - NIH; R24 GM-111625 - NIH; CA78747 - NIH; CA106150 - NIH; GM114353 - NIH; GM115575 - NIH; R01GM121656 - NIH; T32 CA062948-Gudas - NIH; P41 GM076267 - NIH; R01GM114061 - NIGMS, NIH; R15GM116032 - NIGMS, NIH; P30 GM103450 - NIGMS, NIH; GM129465 - NIGMS, NIH; GM119426 - NIGMS, NIH; TW009872 - Fogarty International Center, NIH; U01 TW00313 - Fogarty International Center, NIH; R01 CA158275 - National Cancer Institute (NCI), NIH; P01 AG012411 - NIH/National Institute of Aging; Camille and Henry Dreyfus Foundation; Arnold and Mabel Beckman Foundation; Scripps Institution of Oceanography; P01CA125066 - NCI, NIH; 1 R01 AT008088 - National Center for Complementary and Integrative Health; W81XWH-17-1-0256 - Office of the Assistant Secretary of Defense for Health Affairs through the Peer Reviewed Medical Research Program; P30 CA008748 - NCI, NIH, through a Cancer Center Support Grant; California Department of Food and Agriculture Pierce's Disease and Glassy Winged Sharpshooter Board; American Lebanese Syrian Associated Charities (ALSAC); University of Oklahoma Startup funds; 53767-ND1 - ACS PRF; PhRMA Foundation; P30 CA008748 - CCSG NIH; RSG-12-253-01-CDD - American Cancer Society; RSG-13-011-01-CDD - American Cancer Society; CHE-0353662 - National Science Foundation; CHE-1005253 - National Science Foundation; CHE-1725142 - National Science Foundation; Beckman Foundation; Sherman Fairchild Foundation; John Stauffer Charitable Trust; Christian Scholars Foundation)Published versionSupporting documentatio
Senior Recital: Jonathan Swann, saxophone
This recital is presented in partial fulfillment of requirements for the degree Bachelor of Music in Music Education. Mr. Swann studies saxophone with Sam Skelton.https://digitalcommons.kennesaw.edu/musicprograms/2219/thumbnail.jp
MicroRNAs targeting oncogenes are down-regulated in pancreatic malignant transformation from benign tumors
BACKGROUND
MicroRNA (miRNA) expression profiles have been described in pancreatic ductal adenocarcinoma (PDAC), but these have not been compared with pre-malignant pancreatic tumors. We wished to compare the miRNA expression signatures in pancreatic benign cystic tumors (BCT) of low and high malignant potential with PDAC, in order to identify miRNAs deregulated during PDAC development. The mechanistic consequences of miRNA dysregulation were further evaluated.
METHODS
Tissue samples were obtained at a tertiary pancreatic unit from individuals with BCT and PDAC. MiRNA profiling was performed using a custom microarray and results were validated using RT-qPCR prior to evaluation of miRNA targets.
RESULTS
Widespread miRNA down-regulation was observed in PDAC compared to low malignant potential BCT. We show that amongst those miRNAs down-regulated, miR-16, miR-126 and let-7d regulate known PDAC oncogenes (targeting BCL2, CRK and KRAS respectively). Notably, miR-126 also directly targets the KRAS transcript at a "seedless" binding site within its 3'UTR. In clinical specimens, miR-126 was strongly down-regulated in PDAC tissues, with an associated elevation in KRAS and CRK proteins. Furthermore, miR-21, a known oncogenic miRNA in pancreatic and other cancers, was not elevated in PDAC compared to serous microcystic adenoma (SMCA), but in both groups it was up-regulated compared to normal pancreas, implicating early up-regulation during malignant change.
CONCLUSIONS
Expression profiling revealed 21 miRNAs down-regulated in PDAC compared to SMCA, the most benign lesion that rarely progresses to invasive carcinoma. It appears that miR-21 up-regulation is an early event in the transformation from normal pancreatic tissue. MiRNA expression has the potential to distinguish PDAC from normal pancreas and BCT. Mechanistically the down-regulation of miR-16, miR-126 and let-7d promotes PDAC transformation by post-transcriptional up-regulation of crucial PDAC oncogenes. We show that miR-126 is able to directly target KRAS; re-expression has the potential as a therapeutic strategy against PDAC and other KRAS-driven cancers
Measurement of the cosmic ray spectrum above eV using inclined events detected with the Pierre Auger Observatory
A measurement of the cosmic-ray spectrum for energies exceeding
eV is presented, which is based on the analysis of showers
with zenith angles greater than detected with the Pierre Auger
Observatory between 1 January 2004 and 31 December 2013. The measured spectrum
confirms a flux suppression at the highest energies. Above
eV, the "ankle", the flux can be described by a power law with
index followed by
a smooth suppression region. For the energy () at which the
spectral flux has fallen to one-half of its extrapolated value in the absence
of suppression, we find
eV.Comment: Replaced with published version. Added journal reference and DO
Styrning 2.0? Företagswiki och interaktiva styrsystem
Syftet med uppsatsen är att undersöka vilka styreffekter som uppstår på grund av fallföretagens användande av Wiki samt om det är möjligt att göra eventuella styreffekter interaktiva enligt Simons teorier om interaktiva styrsystem. Vårt vetenskapliga perspektiv är hermeneutik, forskningsansatsen deduktiv och undersökningsmetoden kvalitativ. Semistrukturerade intervjuer samt sekundärdata har använts för att ta fram empirin. Simons teorier om de fyra styrspakarna är huvudsaklig teori. Ytterligare teori är Merchant & Van der Stedes teorier om styrsystem. Huvudsakligt studieobjekt är användandet av företagswiki. Fallstudier genomförs på Alpha och Accenture. Genom användande av Wiki på företag går det att uppnå styrning. Denna styrning kan även göras interaktiv
miR-23b regulates cytoskeletal remodeling, motility and metastasis by directly targeting multiple transcripts
Uncontrolled cell proliferation and cytoskeletal remodeling are responsible for tumor development and ultimately metastasis. A number of studies have implicated microRNAs in the regulation of cancer cell invasion and migration. Here, we show that miR-23b regulates focal adhesion, cell spreading, cell-cell junctions and the formation of lamellipodia in breast cancer (BC), implicating a central role for it in cytoskeletal dynamics. Inhibition of miR-23b, using a specific sponge construct, leads to an increase of cell migration and metastatic spread in vivo, indicating it as a metastatic suppressor microRNA. Clinically, low miR-23b expression correlates with the development of metastases in BC patients. Mechanistically, miR-23b is able to directly inhibit a number of genes implicated in cytoskeletal remodeling in BC cells. Through intracellular signal transduction, growth factors activate the transcription factor AP-1, and we show that this in turn reduces miR-23b levels by direct binding to its promoter, releasing the pro-invasive genes from translational inhibition. In aggregate, miR-23b expression invokes a sophisticated interaction network that co-ordinates a wide range of cellular responses required to alter the cytoskeleton during cancer cell motility
- …
