83,011 research outputs found

    Generalizations of Ekeland-Hofer and Hofer-Zehnder symplectic capacities and applications

    Full text link
    This is the first installment in a series of papers aimed at generalizing symplectic capacities and homologies. The main purposes of this paper are to construct analogues of Ekeland-Hofer and Hofer-Zehnder symplectic capacities based on a class of Hamiltonian boundary value problems motivated by Clarke's and Ekeland's work, and to study generalizations of some important results about the original these two capacities (for example, the famous Weinstein conjecture, representation formula for cEHc_{\rm EH} and cHZc_{\rm HZ}, a theorem by Evgeni Neduv, Brunn-Minkowski type inequality and Minkowski billiard trajectories proposed by Artstein-Avidan-Ostrover).Comment: Latex, 89 pages. Results in Section 1.6 are improved. Some typos are corrected. arXiv admin note: text overlap with arXiv:1903.0067

    From data towards knowledge: Revealing the architecture of signaling systems by unifying knowledge mining and data mining of systematic perturbation data

    Get PDF
    Genetic and pharmacological perturbation experiments, such as deleting a gene and monitoring gene expression responses, are powerful tools for studying cellular signal transduction pathways. However, it remains a challenge to automatically derive knowledge of a cellular signaling system at a conceptual level from systematic perturbation-response data. In this study, we explored a framework that unifies knowledge mining and data mining approaches towards the goal. The framework consists of the following automated processes: 1) applying an ontology-driven knowledge mining approach to identify functional modules among the genes responding to a perturbation in order to reveal potential signals affected by the perturbation; 2) applying a graph-based data mining approach to search for perturbations that affect a common signal with respect to a functional module, and 3) revealing the architecture of a signaling system organize signaling units into a hierarchy based on their relationships. Applying this framework to a compendium of yeast perturbation-response data, we have successfully recovered many well-known signal transduction pathways; in addition, our analysis have led to many hypotheses regarding the yeast signal transduction system; finally, our analysis automatically organized perturbed genes as a graph reflecting the architect of the yeast signaling system. Importantly, this framework transformed molecular findings from a gene level to a conceptual level, which readily can be translated into computable knowledge in the form of rules regarding the yeast signaling system, such as "if genes involved in MAPK signaling are perturbed, genes involved in pheromone responses will be differentially expressed"

    CENTURION: Incentivizing Multi-Requester Mobile Crowd Sensing

    Full text link
    The recent proliferation of increasingly capable mobile devices has given rise to mobile crowd sensing (MCS) systems that outsource the collection of sensory data to a crowd of participating workers that carry various mobile devices. Aware of the paramount importance of effectively incentivizing participation in such systems, the research community has proposed a wide variety of incentive mechanisms. However, different from most of these existing mechanisms which assume the existence of only one data requester, we consider MCS systems with multiple data requesters, which are actually more common in practice. Specifically, our incentive mechanism is based on double auction, and is able to stimulate the participation of both data requesters and workers. In real practice, the incentive mechanism is typically not an isolated module, but interacts with the data aggregation mechanism that aggregates workers' data. For this reason, we propose CENTURION, a novel integrated framework for multi-requester MCS systems, consisting of the aforementioned incentive and data aggregation mechanism. CENTURION's incentive mechanism satisfies truthfulness, individual rationality, computational efficiency, as well as guaranteeing non-negative social welfare, and its data aggregation mechanism generates highly accurate aggregated results. The desirable properties of CENTURION are validated through both theoretical analysis and extensive simulations

    An Analysis of Finite Element Approximation in Electrical Impedance Tomography

    Full text link
    We present a finite element analysis of electrical impedance tomography for reconstructing the conductivity distribution from electrode voltage measurements by means of Tikhonov regularization. Two popular choices of the penalty term, i.e., H1(Ω)H^1(\Omega)-norm smoothness penalty and total variation seminorm penalty, are considered. A piecewise linear finite element method is employed for discretizing the forward model, i.e., the complete electrode model, the conductivity, and the penalty functional. The convergence of the finite element approximations for the Tikhonov model on both polyhedral and smooth curved domains is established. This provides rigorous justifications for the ad hoc discretization procedures in the literature.Comment: 20 page

    Iterative Soft/Hard Thresholding with Homotopy Continuation for Sparse Recovery

    Get PDF
    In this note, we analyze an iterative soft / hard thresholding algorithm with homotopy continuation for recovering a sparse signal xx^\dag from noisy data of a noise level ϵ\epsilon. Under suitable regularity and sparsity conditions, we design a path along which the algorithm can find a solution xx^* which admits a sharp reconstruction error xx=O(ϵ)\|x^* - x^\dag\|_{\ell^\infty} = O(\epsilon) with an iteration complexity O(lnϵlnγnp)O(\frac{\ln \epsilon}{\ln \gamma} np), where nn and pp are problem dimensionality and γ(0,1)\gamma\in (0,1) controls the length of the path. Numerical examples are given to illustrate its performance.Comment: 5 pages, 4 figure
    corecore