5,422 research outputs found
The effect of microstructure of unidirectional fibre-reinforced composites on mechanical properties under transverse loading:a review
Density-Matrix Algorithm for Phonon Hilbert Space Reduction in the Numerical Diagonalization of Quantum Many-Body Systems
Combining density-matrix and Lanczos algorithms we propose a new optimized
phonon approach for finite-cluster diagonalizations of interacting
electron-phonon systems. To illustrate the efficiency and reliability of our
method, we investigate the problem of bipolaron band formation in the extended
Holstein Hubbard model.Comment: 14 pages, 6 figures, Workshop on High Performance Computing in
Science and Engineering, Stuttgart 200
Formalization of Transform Methods using HOL Light
Transform methods, like Laplace and Fourier, are frequently used for
analyzing the dynamical behaviour of engineering and physical systems, based on
their transfer function, and frequency response or the solutions of their
corresponding differential equations. In this paper, we present an ongoing
project, which focuses on the higher-order logic formalization of transform
methods using HOL Light theorem prover. In particular, we present the
motivation of the formalization, which is followed by the related work. Next,
we present the task completed so far while highlighting some of the challenges
faced during the formalization. Finally, we present a roadmap to achieve our
objectives, the current status and the future goals for this project.Comment: 15 Pages, CICM 201
Out-of-equilibrium physics in driven dissipative coupled resonator arrays
Coupled resonator arrays have been shown to exhibit interesting many- body
physics including Mott and Fractional Hall states of photons. One of the main
differences between these photonic quantum simulators and their cold atoms
coun- terparts is in the dissipative nature of their photonic excitations. The
natural equi- librium state is where there are no photons left in the cavity.
Pumping the system with external drives is therefore necessary to compensate
for the losses and realise non-trivial states. The external driving here can
easily be tuned to be incoherent, coherent or fully quantum, opening the road
for exploration of many body regimes beyond the reach of other approaches. In
this chapter, we review some of the physics arising in driven dissipative
coupled resonator arrays including photon fermionisa- tion, crystallisation, as
well as photonic quantum Hall physics out of equilibrium. We start by briefly
describing possible experimental candidates to realise coupled resonator arrays
along with the two theoretical models that capture their physics, the
Jaynes-Cummings-Hubbard and Bose-Hubbard Hamiltonians. A brief review of the
analytical and sophisticated numerical methods required to tackle these systems
is included.Comment: Chapter that appeared in "Quantum Simulations with Photons and
Polaritons: Merging Quantum Optics with Condensed Matter Physics" edited by
D.G.Angelakis, Quantum Science and Technology Series, Springer 201
Policing the community together: the impact of technology on citizen engagement
Despite broad and often varied underlying definitions, a common theme throughout community and neighbourhood policing strategies establishes the need to target improvements in the relationship and level of engagement between the police and the communities they serve. Community policing approaches have long underpinned a desire to move away from reactive policing models towards those which establish a more proactive philosophy, responsive to the wants and needs of the community. The near ubiquitous proliferation of smartphones and other ICTs (Information and Communication Technologies) means they are often seen as a vector through which initiatives of all kinds can instil a culture of proactive engagement with their respective stakeholder communities. This paper builds upon existing research which suggests that technologies for crime prevention should be designed to support communications and problem-solving rather than used simply as a means to disseminate information, unpacking a number of the core concepts that are considered central to participation and effective engagement; social capital, public participation and social and digital inclusion. Moreover, examples of wider initiatives are comparatively discussed, not just those associated with community policing, which target the engagement of communities through the use of technology, and more specifically mobile applications, before reflecting on the empirical evidence and experiences gleaned through the EU H2020 funded ‘UNITY’ project, a project that sought to establish effective strategies for engagement between police and citizen communities
The role of temperature and frequency on fretting wear of a like-on-like stainless steel contact
The influences of environmental temperature and fretting frequency on the mechanisms and rates of wear in a like-on-like 304 stainless steel contact were examined, and mainly attributed to changes in the mechanical response of the bulk material and to changes in the behaviour of the oxide debris formed in the fretting process. At low temperatures, wear proceeds by continual oxide formation and egress from the contact, whilst at high temperatures, the rate of wear is much reduced, associated with the development of oxide formed into a protective bed within the contact. The temperature at which the change between these two behaviours took place was dependent upon the fretting frequency, with evidence that, at this transition temperature, changes in behaviour can occur as the fretting test proceeds under a fixed set of conditions. An interaction diagram has been developed which provides a coherent framework by which the complex effects of these two parameters can be rationalised in terms of widely accepted physical principles
Two loop electroweak corrections to and in the B-LSSM
The rare decays and are important to research new physics beyond standard model. In
this work, we investigate two loop electroweak corrections to and in the minimal
supersymmetric extension of the SM with local gauge symmetry (B-LSSM),
under a minimal flavor violating assumption for the soft breaking terms. In
this framework, new particles and new definition of squarks can affect the
theoretical predictions of these two processes, with respect to the MSSM.
Considering the constraints from updated experimental data, the numerical
results show that the B-LSSM can fit the experimental data for the branching
ratios of and . The
results of the rare decays also further constrain the parameter space of the
B-LSSM.Comment: 33 pages, 9 figures, Published in EPJ
Disparities and risks of sexually transmissible infections among men who have sex with men in China: a meta-analysis and data synthesis.
BACKGROUND: Sexually transmitted infections (STIs), including Hepatitis B and C virus, are emerging public health risks in China, especially among men who have sex with men (MSM). This study aims to assess the magnitude and risks of STIs among Chinese MSM. METHODS: Chinese and English peer-reviewed articles were searched in five electronic databases from January 2000 to February 2013. Pooled prevalence estimates for each STI infection were calculated using meta-analysis. Infection risks of STIs in MSM, HIV-positive MSM and male sex workers (MSW) were obtained. This review followed the PRISMA guidelines and was registered in PROSPERO. RESULTS: Eighty-eight articles (11 in English and 77 in Chinese) investigating 35,203 MSM in 28 provinces were included in this review. The prevalence levels of STIs among MSM were 6.3% (95% CI: 3.5-11.0%) for chlamydia, 1.5% (0.7-2.9%) for genital wart, 1.9% (1.3-2.7%) for gonorrhoea, 8.9% (7.8-10.2%) for hepatitis B (HBV), 1.2% (1.0-1.6%) for hepatitis C (HCV), 66.3% (57.4-74.1%) for human papillomavirus (HPV), 10.6% (6.2-17.6%) for herpes simplex virus (HSV-2) and 4.3% (3.2-5.8%) for Ureaplasma urealyticum. HIV-positive MSM have consistently higher odds of all these infections than the broader MSM population. As a subgroup of MSM, MSW were 2.5 (1.4-4.7), 5.7 (2.7-12.3), and 2.2 (1.4-3.7) times more likely to be infected with chlamydia, gonorrhoea and HCV than the broader MSM population, respectively. CONCLUSION: Prevalence levels of STIs among MSW were significantly higher than the broader MSM population. Co-infection of HIV and STIs were prevalent among Chinese MSM. Integration of HIV and STIs healthcare and surveillance systems is essential in providing effective HIV/STIs preventive measures and treatments. TRIAL REGISTRATION: PROSPERO NO: CRD42013003721
Assessing the carcinogenic potential of low-dose exposures to chemical mixtures in the environment: the challenge ahead.
Lifestyle factors are responsible for a considerable portion of cancer incidence worldwide, but credible estimates from the World Health Organization and the International Agency for Research on Cancer (IARC) suggest that the fraction of cancers attributable to toxic environmental exposures is between 7% and 19%. To explore the hypothesis that low-dose exposures to mixtures of chemicals in the environment may be combining to contribute to environmental carcinogenesis, we reviewed 11 hallmark phenotypes of cancer, multiple priority target sites for disruption in each area and prototypical chemical disruptors for all targets, this included dose-response characterizations, evidence of low-dose effects and cross-hallmark effects for all targets and chemicals. In total, 85 examples of chemicals were reviewed for actions on key pathways/mechanisms related to carcinogenesis. Only 15% (13/85) were found to have evidence of a dose-response threshold, whereas 59% (50/85) exerted low-dose effects. No dose-response information was found for the remaining 26% (22/85). Our analysis suggests that the cumulative effects of individual (non-carcinogenic) chemicals acting on different pathways, and a variety of related systems, organs, tissues and cells could plausibly conspire to produce carcinogenic synergies. Additional basic research on carcinogenesis and research focused on low-dose effects of chemical mixtures needs to be rigorously pursued before the merits of this hypothesis can be further advanced. However, the structure of the World Health Organization International Programme on Chemical Safety 'Mode of Action' framework should be revisited as it has inherent weaknesses that are not fully aligned with our current understanding of cancer biology
Holographic Evolution of Entanglement Entropy
We study the evolution of entanglement entropy in a 2-dimensional
equilibration process that has a holographic description in terms of a Vaidya
geometry. It models a unitary evolution in which the field theory starts in a
pure state, its vacuum, and undergoes a perturbation that brings it far from
equilibrium. The entanglement entropy in this set up provides a measurement of
the quantum entanglement in the system. Using holographic techniques we recover
the same result obtained before from the study of processes triggered by a
sudden change in a parameter of the hamiltonian, known as quantum quenches.
Namely, entanglement in 2-dimensional conformal field theories propagates with
velocity v^2=1. Both in quantum quenches and in the Vaidya model equilibration
is only achieved at the local level. Remarkably, the holographic derivation of
this last fact requires information from behind the apparent horizon generated
in the process of gravitational collapse described by the Vaidya geometry. In
the early stages of the evolution the apparent horizon seems however to play no
relevant role with regard to the entanglement entropy. We speculate on the
possibility of deriving a thermalization time for occupation numbers from our
analysis.Comment: 26 pages, 10 figure
- …
