57,257 research outputs found
3D Textured Model Encryption via 3D Lu Chaotic Mapping
In the coming Virtual/Augmented Reality (VR/AR) era, 3D contents will be
popularized just as images and videos today. The security and privacy of these
3D contents should be taken into consideration. 3D contents contain surface
models and solid models. The surface models include point clouds, meshes and
textured models. Previous work mainly focus on encryption of solid models,
point clouds and meshes. This work focuses on the most complicated 3D textured
model. We propose a 3D Lu chaotic mapping based encryption method of 3D
textured model. We encrypt the vertexes, the polygons and the textures of 3D
models separately using the 3D Lu chaotic mapping. Then the encrypted vertices,
edges and texture maps are composited together to form the final encrypted 3D
textured model. The experimental results reveal that our method can encrypt and
decrypt 3D textured models correctly. In addition, our method can resistant
several attacks such as brute-force attack and statistic attack.Comment: 13 pages, 7 figures, under review of SCI
Plasmonic angular momentum on metal-dielectric nano-wedges in a sectorial indefinite metamaterial
We present an analytical study to the structure-modulated plasmonic angular
momentum trapped on periodic metal-dielectric nano-wedges in the core region of
a sectorial indefinite metamaterial. Employing a transfer-matrix calculation
and a conformal-mapping technique, our theory is capable of dealing with
realistic configurations of arbitrary sector numbers and rounded wedge tips. We
demonstrate that in the deep-subwavelength regime strong electric field
carrying high azimuthal variation can exist within only ten-nanometer length
scale close to the structural center, and is naturally bounded by a
characteristic radius of the order of hundred-nanometer away from the center.
These extreme confining properties suggest that the structure under
investigation may be superior to the conventional metal-dielectric waveguides
or cavities in terms of nanoscale photonic manipulation.Comment: 16 pages, 9 figure
Recommended from our members
Impacts of model calibration on high-latitude land-surface processes: PILPS 2(e) calibration/validation experiments
In the PILPS 2(e) experiment, the Snow Atmosphere Soil Transfer (SAST) land-surface scheme developed from the Biosphere-Atmosphere Transfer Scheme (BATS) showed difficulty in accurately simulating the patterns and quantities of runoff resulting from heavy snowmelt in the high-latitude Torne-Kalix River basin (shared by Sweden and Finland). This difficulty exposes the model deficiency in runoff formations. After representing subsurface runoff and calibrating the parameters, the accuracy of hydrograph prediction improved substantially. However, even with the accurate precipitation and runoff, the predicted soil moisture and its variation were highly "model-dependent". Knowledge obtained from the experiment is discussed. © 2003 Elsevier Science B.V. All rights reserved
Variation of the solar magnetic flux spectrum during solar cycle 23
By using the unique database of SOHO/MDI full disk magnetograms from 1996
September to 2011 January, covering the entire solar cycle 23, we analyze the
time-variability of the solar magnetic flux spectrum and study the properties
of extended minimum of cycle 23. We totally identify 11.5 million magnetic
structures. It has been revealed that magnetic features with different magnetic
fluxes exhibit different cycle behaviors. The magnetic features with flux
larger than Mx, which cover solar active regions and
strong network features, show exactly the same variation as sunspots; However,
the remaining magnetic features which cover the majority of network
elements show anti-phase variation with sunspots. We select a riterion that the
monthly sunspot number is less than 20 to represent the Sun's low activity
status. Then we find the extended minimum of cycle 23 is characterized by the
long duration of low activity status, but the magnitude of magnetic flux in
this period is not lower than previous cycle. Both the duration of low activity
status and the minimum activity level defined by minimum sunspot number show a
century period approximately. The extended minimum of cycle 23 shows
similarities with solar cycle 11, which preceded the mini-maxima in later solar
cycles. This similarity is suggestive that the solar cycles following cycle 23
are likely to have low activity.Comment: 24 pages, 7 figures, accepted by JGR in 201
Thermodynamics of lattice QCD with 2 flavours of colour-sextet quarks: A model of walking/conformal Technicolor
QCD with two flavours of massless colour-sextet quarks is considered as a
model for conformal/walking Technicolor. If this theory possess an infrared
fixed point, as indicated by 2-loop perturbation theory, it is a
conformal(unparticle) field theory. If, on the other hand, a chiral condensate
forms on the weak-coupling side of this would-be fixed point, the theory
remains confining. The only difference between such a theory and regular QCD is
that there is a range of momentum scales over which the coupling constant runs
very slowly (walks). In this first analysis, we simulate the lattice version of
QCD with two flavours of staggered quarks at finite temperatures on lattices of
temporal extent and 6. The deconfinement and chiral-symmetry
restoration couplings give us a measure of the scales associated with
confinement and chiral-symmetry breaking. We find that, in contrast to what is
seen with fundamental quarks, these transition couplings are very different.
for each of these transitions increases significantly from
and as expected for the finite temperature transitions of an
asymptotically-free theory. This suggests a walking rather than a conformal
behaviour, in contrast to what is observed with Wilson quarks. In contrast to
what is found for fundamental quarks, the deconfined phase exhibits states in
which the Polyakov loop is oriented in the directions of all three cube roots
of unity. At very weak coupling the states with complex Polyakov loops undergo
a transition to a state with a real, negative Polyakov loop.Comment: 21 pages, 9 figures, Revtex with postscript figures. One extra
reference was added; text is unchanged. Corrected typographical erro
Nucleon Sigma Term and In-medium Quark Condensate in the Modified Quark-Meson Coupling Model
We evaluate the nucleon sigma term and in-medium quark condensate in the
modified quark-meson coupling model which features a density-dependent bag
constant. We obtain a nucleon sigma term consistent with its empirical value,
which requires a significant reduction of the bag constant in the nuclear
medium similar to those found in the previous works. The resulting in-medium
quark condensate at low densities agrees well with the model independent linear
order result. At higher densities, the magnitude of the in-medium quark
condensate tends to increase, indicating no tendency toward chiral symmetry
restoration.Comment: 9 pages, modified version to be publishe
Comments on lattice gauge theories with infrared-attractive fixed points
Theories of interacting gauge fields and fermions can possess a running gauge
coupling with an infrared attractive fixed point (IRFP). We present a minimal
description of the physics of these systems and comment on some simple
expectations for results from lattice simulations done within the basin of
attraction of the IRFP in these theories.Comment: 10 pages, 2 figures. Published version, fixed typos in version
Non-Hermitian description of the dynamics of inter-chain pair tunnelling
We study inter-chain pair tunnelling dynamics based on an exact two-particle
solution for a two-leg ladder. We show that the Hermitian Hamiltonian shares a
common two-particle eigenstate with a corresponding non-Hermitian Hubbard
Hamiltonian in which the non-Hermiticity arises from an on-site interaction of
imaginary strength. Our results provides that the dynamic processes of
two-particle collision and across-legs tunnelling are well described by the
effective non-Hermitian Hubbard Hamiltonian based on the eigenstate
equivalence. We also find that any common eigenstate is always associated with
the emergence of spectral singularity in the non-Hermitian Hubbard model. This
result is valid for both Bose and Fermi systems and provides a clear physical
implication of the non-Hermitian Hubbard model.Comment: 10 pages, 4 figure
Dissipation induced state in a Rydberg-atom-cavity system
A dissipative scheme is proposed to prepare tripartite state in a
Rydberg-atom-cavity system. It is an organic combination of quantum Zeno
dynamics, Rydberg antiblockade and atomic spontaneous emission to turn the
tripartite state into the unique steady state of the whole system. The
robustness against the loss of cavity and the feasibility of the scheme are
demonstrated thoroughly by the current experimental parameters, which leads to
a high fidelity above .Comment: 5 pages, 3 figures, accepted by Opt. Let
- …
