35,752 research outputs found
Recommended from our members
Network Properties Revealed during Multi-Scale Calcium Imaging of Seizure Activity in Zebrafish.
Seizures are characterized by hypersynchronization of neuronal networks. Understanding these networks could provide a critical window for therapeutic control of recurrent seizure activity, i.e., epilepsy. However, imaging seizure networks has largely been limited to microcircuits in vitro or small "windows" in vivo. Here, we combine fast confocal imaging of genetically encoded calcium indicator (GCaMP)-expressing larval zebrafish with local field potential (LFP) recordings to study epileptiform events at whole-brain and single-neuron levels in vivo. Using an acute seizure model (pentylenetetrazole, PTZ), we reliably observed recurrent electrographic ictal-like events associated with generalized activation of all major brain regions and uncovered a well-preserved anterior-to-posterior seizure propagation pattern. We also examined brain-wide network synchronization and spatiotemporal patterns of neuronal activity in the optic tectum microcircuit. Brain-wide and single-neuronal level analysis of PTZ-exposed and 4-aminopyridine (4-AP)-exposed zebrafish revealed distinct network dynamics associated with seizure and non-seizure hyperexcitable states, respectively. Neuronal ensembles, comprised of coactive neurons, were also uncovered during interictal-like periods. Taken together, these results demonstrate that macro- and micro-network calcium motifs in zebrafish may provide a greater understanding of epilepsy
Aerodynamics of thrust vectoring by Navier-Stokes solutions
Induced aerodynamics from thrust vectoring are investigated by a computational fluid dynamic method. A thin-layer Reynolds-averaged Navier-Stokes code with multiblock capability is used. Jet properties are specified on the nozzle exit plane to simulate the jet momentum. Results for a rectangular jet in a cross flow are compared with data to verify the code. Further verification of the calculation is made by comparing the numerical results with transonic data for a wing-body combination. Additional calculations were performed to elucidate the following thrust vectoring effects: the thrust vectoring effect on shock and expansion waves, induced effects on nearby surfaces, and the thrust vectoring effect on the leading edge vortex
Random Control over Quantum Open Systems
Parametric fluctuations or stochastic signals are introduced into the control
pulse sequence to investigate the feasibility of random control over quantum
open systems. In a large parameter error region, the out-of-order control
pulses work as well as the regular pulses for dynamical decoupling and
dissipation suppression. Calculations and analysis are based on a
non-perturbative control approach allowed by an exact quantum-state-diffusion
equation. When the average frequency and duration of the pulse sequence take
proper values, the random control sequence is robust, fault- tolerant, and
insensitive to pulse strength deviations and interpulse temporal separation in
the quasi-periodic sequence. This relaxes the operational requirements placed
on quantum control experiments to a great deal.Comment: 7 pages, 6 firgure
- …
