28,149 research outputs found

    Integrable Systems in n-dimensional Riemannian Geometry

    Full text link
    In this paper we show that if one writes down the structure equations for the evolution of a curve embedded in an (n)-dimensional Riemannian manifold with constant curvature this leads to a symplectic, a Hamiltonian and an hereditary operator. This gives us a natural connection between finite dimensional geometry, infinite dimensional geometry and integrable systems. Moreover one finds a Lax pair in (\orth{n+1}) with the vector modified Korteweg-De Vries equation (vmKDV) \vk{t}= \vk{xxx}+\fr32 ||\vk{}||^2 \vk{x} as integrability condition. We indicate that other integrable vector evolution equations can be found by using a different Ansatz on the form of the Lax pair. We obtain these results by using the {\em natural} or {\em parallel} frame and we show how this can be gauged by a generalized Hasimoto transformation to the (usual) {\em Fren{\^e}t} frame. If one chooses the curvature to be zero, as is usual in the context of integrable systems, then one loses information unless one works in the natural frame

    Lenard scheme for two dimensional periodic Volterra chain

    Full text link
    We prove that for compatible weakly nonlocal Hamiltonian and symplectic operators, hierarchies of infinitely many commuting local symmetries and conservation laws can be generated under some easily verified conditions no matter whether the generating Nijenhuis operators are weakly nonlocal or not. We construct a recursion operator of the two dimensional periodic Volterra chain from its Lax representation and prove that it is a Nijenhuis operator. Furthermore we show this system is a (generalised) bi-Hamiltonian system. Rather surprisingly, the product of its weakly nonlocal Hamiltonian and symplectic operators gives rise to the square of the recursion operator.Comment: Submit to Journal of Mathematical Physic

    Quantitative spectroscopic analysis of heterogeneous mixtures: the correction of multiplicative effects caused by variations in physical properties of samples

    Get PDF
    Spectral measurements of complex heterogeneous types of mixture samples are often affected by significant multiplicative effects resulting from light scattering, due to physical variations (e.g. particle size and shape, sample packing and sample surface, etc.) inherent within the individual samples. Therefore, the separation of the spectral contributions due to variations in chemical compositions from those caused by physical variations is crucial to accurate quantitative spectroscopic analysis of heterogeneous samples. In this work, an improved strategy has been proposed to estimate the multiplicative parameters accounting for multiplicative effects in each measured spectrum, and hence mitigate the detrimental influence of multiplicative effects on the quantitative spectroscopic analysis of heterogeneous samples. The basic assumption of the proposed method is that light scattering due to physical variations has the same effects on the spectral contributions of each of the spectroscopically active chemical component in the same sample mixture. Based on this underlying assumption, the proposed method realizes the efficient estimation of the multiplicative parameters by solving a simple quadratic programming problem. The performance of the proposed method has been tested on two publicly available benchmark data sets (i.e. near-infrared total diffuse transmittance spectra of four-component suspension samples and near infrared spectral data of meat samples) and compared with some empirical approaches designed for the same purpose. It was found that the proposed method provided appreciable improvement in quantitative spectroscopic analysis of heterogeneous mixture samples. The study indicates that accurate quantitative spectroscopic analysis of heterogeneous mixture samples can be achieved through the combination of spectroscopic techniques with smart modeling methodology
    corecore