10,612 research outputs found
Online Updating of Statistical Inference in the Big Data Setting
We present statistical methods for big data arising from online analytical
processing, where large amounts of data arrive in streams and require fast
analysis without storage/access to the historical data. In particular, we
develop iterative estimating algorithms and statistical inferences for linear
models and estimating equations that update as new data arrive. These
algorithms are computationally efficient, minimally storage-intensive, and
allow for possible rank deficiencies in the subset design matrices due to
rare-event covariates. Within the linear model setting, the proposed
online-updating framework leads to predictive residual tests that can be used
to assess the goodness-of-fit of the hypothesized model. We also propose a new
online-updating estimator under the estimating equation setting. Theoretical
properties of the goodness-of-fit tests and proposed estimators are examined in
detail. In simulation studies and real data applications, our estimator
compares favorably with competing approaches under the estimating equation
setting.Comment: Submitted to Technometric
A thermodynamically consistent quasi-particle model without density-dependent infinity of the vacuum zero point energy
In this paper, we generalize the improved quasi-particle model proposed in J.
Cao et al., [ Phys. Lett. B {\bf711}, 65 (2012)] from finite temperature and
zero chemical potential to the case of finite chemical potential and zero
temperature, and calculate the equation of state (EOS) for (2+1) flavor Quantum
Chromodynamics (QCD) at zero temperature and high density. We first calculate
the partition function at finite temperature and chemical potential, then go to
the limit and obtain the equation of state (EOS) for cold and dense QCD,
which is important for the study of neutron stars. Furthermore, we use this EOS
to calculate the quark-number density, the energy density, the quark-number
susceptibility and the speed of sound at zero temperature and finite chemical
potential and compare our results with the corresponding ones in the existing
literature
An optical fiber tip micrograting thermometer
An ~12 µm long Bragg grating was engraved in an ~5 µm diameter optical fiber tip by focused ion beam (FIB) milling. An ~10-dB extinction was achieved at 1570 nm with only 11 indentations. The grating was used for temperature sensing, and it exhibited a temperature sensitivity of ~22 pm/°C
Finite Temperature Schr\"{o}dinger Equation
We know Schr\"{o}dinger equation describes the dynamics of quantum systems,
which don't include temperature. In this paper, we propose finite temperature
Schr\"{o}dinger equation, which can describe the quantum systems in an
arbitrary temperature. When the temperature T=0, it become Shr\"{o}dinger
equation.Comment: 8 page
Quantum theory of light diffraction
At present, the theory of light diffraction only has the simple wave-optical
approach. In this paper, we study light diffraction with the approach of
relativistic quantum theory. We find that the slit length, slit width, slit
thickness and wave-length of light have affected to the diffraction intensity
and form of diffraction pattern. However, the effect of slit thickness on the
diffraction pattern can not be explained by wave-optical approach, and it can
be explained in quantum theory. We compare the theoretical results with single
and multiple slits experiment data, and find the theoretical results are
accordance with the experiment data. Otherwise, we give some theory prediction.
We think all the new prediction will be tested by the light diffraction
experiment.Comment: 10 page
- …
