34,628 research outputs found
Substructure and Boundary Modeling for Continuous Action Recognition
This paper introduces a probabilistic graphical model for continuous action
recognition with two novel components: substructure transition model and
discriminative boundary model. The first component encodes the sparse and
global temporal transition prior between action primitives in state-space model
to handle the large spatial-temporal variations within an action class. The
second component enforces the action duration constraint in a discriminative
way to locate the transition boundaries between actions more accurately. The
two components are integrated into a unified graphical structure to enable
effective training and inference. Our comprehensive experimental results on
both public and in-house datasets show that, with the capability to incorporate
additional information that had not been explicitly or efficiently modeled by
previous methods, our proposed algorithm achieved significantly improved
performance for continuous action recognition.Comment: Detailed version of the CVPR 2012 paper. 15 pages, 6 figure
Spectroscopic Observation and Analysis of HII regions in M33 with MMT: Temperatures and Oxygen Abundances
The spectra of 413 star-forming (or HII) regions in M33 (NGC 598) were
observed by using the multifiber spectrograph of Hectospec at the 6.5-m
Multiple Mirror Telescope (MMT). By using this homogeneous spectra sample, we
measured the intensities of emission lines and some physical parameters, such
as electron temperatures, electron densities, and metallicities. Oxygen
abundances were derived via the direct method (when available) and two
empirical strong-line methods, namely, O3N2 and N2. In the high-metallicity
end, oxygen abundances derived from O3N2 calibration were higher than those
derived from N2 index, indicating an inconsistency between O3N2 and N2
calibrations. We presented a detailed analysis of the spatial distribution of
gas-phase oxygen abundances in M33 and confirmed the existence of the
axisymmetric global metallicity distribution widely assumed in literature.
Local variations were also observed and subsequently associated with spiral
structures to provide evidence of radial migration driven by arms. Our O/H
gradient fitted out to 1.1 resulted in slopes of ,
, and dex utilizing abundances from
O3N2, N2 diagnostics, and direct method, respectively.Comment: Accepted for publication in Ap
Structure fusion based on graph convolutional networks for semi-supervised classification
Suffering from the multi-view data diversity and complexity for
semi-supervised classification, most of existing graph convolutional networks
focus on the networks architecture construction or the salient graph structure
preservation, and ignore the the complete graph structure for semi-supervised
classification contribution. To mine the more complete distribution structure
from multi-view data with the consideration of the specificity and the
commonality, we propose structure fusion based on graph convolutional networks
(SF-GCN) for improving the performance of semi-supervised classification.
SF-GCN can not only retain the special characteristic of each view data by
spectral embedding, but also capture the common style of multi-view data by
distance metric between multi-graph structures. Suppose the linear relationship
between multi-graph structures, we can construct the optimization function of
structure fusion model by balancing the specificity loss and the commonality
loss. By solving this function, we can simultaneously obtain the fusion
spectral embedding from the multi-view data and the fusion structure as
adjacent matrix to input graph convolutional networks for semi-supervised
classification. Experiments demonstrate that the performance of SF-GCN
outperforms that of the state of the arts on three challenging datasets, which
are Cora,Citeseer and Pubmed in citation networks
Recommended from our members
Health and economic benefits of building ventilation interventions for reducing indoor PM2.5 exposure from both indoor and outdoor origins in urban Beijing, China
China is confronted with serious PM2.5 pollution, especially in the capital city of Beijing. Exposure to PM2.5 could lead to various negative health impacts including premature mortality. As people spend most of their time indoors, the indoor exposure to PM2.5 from both indoor and outdoor origins constitutes the majority of personal exposure to PM2.5 pollution. Different building interventions have been introduced to mitigate indoor PM2.5 exposure, but always at the cost of energy expenditure. In this study, the health and economic benefits of different ventilation intervention strategies for reducing indoor PM2.5 exposure are modelled using a representative urban residence in Beijing, with consideration of different indoor PM2.5 emission strengths and outdoor pollution. Our modelling results show that the increase of envelope air-tightness can achieve significant economic benefits when indoor PM2.5 emissions are absent; however, if an indoor PM2.5 source is present, the benefits only increase slightly in mechanically ventilated buildings, but may show negative benefit without mechanical ventilation. Installing mechanical ventilation in Beijing can achieve annual economic benefits ranging from 200yuan/capita to 800yuan/capita if indoor PM2.5 sources exist. If there is no indoor emission, the annual benefits above 200yuan/capita can be achieved only when the PM2.5 filtration efficiency is no less than 90% and the envelope air-tightness is above Chinese National Standard Level 7. Introducing mechanical ventilation with low PM2.5 filtration efficiency to current residences in urban Beijing will increase the indoor PM2.5 exposure and result in excess costs to the resident
The peculiar filamentary HI structure of NGC 6145
In this paper, we report the peculiar HI morphology of the cluster spiral
galaxy NGC 6145, which has a 150 kpc HI filament on one side that is nearly
parallel to its major axis. This filament is made up of several HI clouds and
the diffuse HI gas between them, with no optical counterparts. We compare its
HI distribution with other one-sided HI distributions in the literature, and
find that the overall HI distribution is very different from the typical tidal
and ram-pressure stripped HI shape, and its morphology is inconsistent with
being a pure accretion event. Only about 30% of the total HI gas is anchored on
the stellar disk, while most of HI gas forms the filament in the west. At a
projected distance of 122 kpc, we find a massive elliptical companion (NGC
6146) with extended radio emission, whose axis points to an HI gap in NGC 6145.
The velocity of the HI filament shows an overall light-of- sight motion of 80
to 180 km/s with respect to NGC 6145. Using the long-slit spectra of NGC 6145
along its major stellar axis, we find that some outer regions show enhanced
star formation, while in contrast, almost no star formation activities are
found in its center (less than 2 kpc). Pure accretion, tidal or ram-pressure
stripping is not likely to produce the observed HI filament. An alternative
explanation is the jet-stripping from NGC 6146, although direct evidence for a
jet-cold gas interaction has not been found.Comment: 12 pages, 6 figures; Accepted for publication in A
- …
