280 research outputs found
MPT0G413, A Novel HDAC6-Selective Inhibitor, and Bortezomib Synergistically Exert Anti-tumor Activity in Multiple Myeloma Cells
In multiple myeloma (MM), homeostasis is largely maintained by misfolded protein clearance via the proteasomal and aggresomal pathways. Histone deacetylase 6 (HDAC6) binds polyubiquitinated proteins and dynein motors and transports this protein cargo to the aggresome for further degradation. Accordingly, a combination of an HDAC6 inhibitor and bortezomib (BTZ) could increase ubiquitinated protein accumulation, leading to further apoptosis. Here we evaluated the anti-MM activity of MPT0G413, a novel specific HDAC6 inhibitor, using in vitro and in vivo models. MPT0G413 treatment more significantly inhibited cell growth in MM cells than in normal bone marrow cells. Furthermore, the combination of MPT0G413 and BTZ enhanced polyubiquitinated protein accumulation and synergistically reduced MM viability, increased caspase-3, caspase-8, caspase-9 levels, and cleaved poly (ADP) ribosome polymerase and also inhibited adherence of MM cells to bone marrow stromal cells (BMSC) and reduced VEGF and IL-6 levels and cell growth in a co-culture system. The combination treatment disturbed the bone marrow microenvironment and induced synergic, caspase-dependent apoptosis. Xenograft tumor growth significantly decreased in combination-treated SCID mice. In conclusion, MPT0G413 and BTZ synergistically inhibit MM viability, providing a framework for the clinical evaluation of combined therapies for MM
Anti-Arthritic Effects of Magnolol in Human Interleukin 1β-Stimulated Fibroblast-Like Synoviocytes and in a Rat Arthritis Model
Fibroblast-like synoviocytes (FLS) play an important role in the pathologic processes of destructive arthritis by producing a number of catabolic cytokines and metalloproteinases (MMPs). The expression of these mediators is controlled at the transcriptional level. The purposes of this study were to evaluate the anti-arthritic effects of magnolol (5,5′-Diallyl-biphenyl-2,2′-diol), the major bioactive component of the bark of Magnolia officinalis, by examining its inhibitory effects on inflammatory mediator secretion and the NF-κB and AP-1 activation pathways and to investigate its therapeutic effects on the development of arthritis in a rat model. The in vitro anti-arthritic activity of magnolol was tested on interleukin (IL)-1β-stimulated FLS by measuring levels of IL-6, cyclooxygenase-2, prostaglandin E2, and matrix metalloproteinases (MMPs) by ELISA and RT-PCR. Further studies on how magnolol inhibits IL-1β-stimulated cytokine expression were performed using Western blots, reporter gene assay, electrophoretic mobility shift assay, and confocal microscope analysis. The in vivo anti-arthritic effects of magnolol were evaluated in a Mycobacterium butyricum-induced arthritis model in rats. Magnolol markedly inhibited IL-1β (10 ng/mL)-induced cytokine expression in a concentration-dependent manner (2.5–25 µg/mL). In clarifying the mechanisms involved, magnolol was found to inhibit the IL-1β-induced activation of the IKK/IκB/NF-κB and MAPKs pathways by suppressing the nuclear translocation and DNA binding activity of both transcription factors. In the animal model, magnolol (100 mg/kg) significantly inhibited paw swelling and reduced serum cytokine levels. Our results demonstrate that magnolol inhibits the development of arthritis, suggesting that it might provide a new therapeutic approach to inflammatory arthritis diseases
Recommended from our members
Clinical impact of pharmacogenetic risk variants in a large chinese cohort.
Incorporating pharmacogenetics into clinical practice promises to improve therapeutic outcomes by optimizing drug selection and dosage based on genetic factors affecting drug response. A key advantage of PGx-guided therapy is to decrease the likelihood of adverse events. To evaluate the clinical impact of PGx risk variants, we performed a retrospective study using genetic and clinical data from the largest Han Chinese cohort, comprising 486,956 individuals, assembled by the Taiwan Precision Medicine Initiative. We found that nearly all participants carried at least one genetic variant that could affect drug response, with many carrying multiple risk variants. Here we show the detailed analyses of four gene-drug pairs, azathioprine (NUDT15/TPMT), clopidogrel (CYP2C19), statins (ABCG2/CYP2C9/SLCO1B1), and NSAIDs (CYP2C9), for which sufficient data exists for statistical power. While the results validate previous findings that PGx risk variants are significantly associated with drug-related adverse events or ineffectiveness, the excess risk of adverse events or lack of efficacy is small compared to that found in those without the PGx risk variants, and most patients with PGx variants do not suffer from adverse events. Our results point to the complexity of implementing PGx in clinical practice and the need for integrative approaches to optimize precision medicine
Histone lysine specific demethylase 1 inhibitors
LSD1 plays a pivotal role in numerous biological functions.</p
Recent developments in epigenetic cancer therapeutics: clinical advancement and emerging trends
AbstractEpigenetic drug discovery field has evidenced significant advancement in the recent times. A plethora of small molecule inhibitors have progressed to clinical stage investigations and are being explored exhaustively to ascertain conclusive benefits in diverse malignancies. Literature precedents indicates that substantial amount of efforts were directed towards the use of epigenetic tools in monotherapy as well as in combination regimens at the clinical level, however, the preclinical/preliminary explorations were inclined towards the identification of prudent approaches that can leverage the anticancer potential of small molecule epigenetic inhibitors as single agents only. This review article presents an update of FDA approved epigenetic drugs along with the epigenetic inhibitors undergoing clinical stage investigations in different cancer types. A detailed discussion of the pragmatic strategies that are expected to steer the progress of the epigenetic therapy through the implementation of emerging approaches such as PROTACS and CRISPR/Cas9 along with logical ways for scaffold fabrication to selectively approach the enzyme isoforms in pursuit of garnering amplified antitumor effects has been covered. In addition, the compilation also presents the rational strategies for the construction of multi-targeting scaffold assemblages employing previously identified pharmacophores as potential alternatives to the combination therapy.</jats:p
Synthesis of morphine fragments spiro[benzofuran-3(2H),4′-piperidine] and octahydro-1H-benzofuro[3,2-e]isoquinoline by intramolecular Heck reaction
- …
