7,076 research outputs found
Transfer to the Collinear Libration Point L3 in the Sun-Earth+Moon System
The collinear libration point L3 of the sun-earth+moon system is an ideal place for some space missions. Although there has been a great amount of work concerning the applications of the other two collinear libration points L1 and L2, little work has been done about the point L3. In this paper, the dynamics of the libration points was briefly introduced first. Then a way to transfer the spacecraft to the collinear libration point L3 via the invariant manifolds of the other two collinear libration points was proposed. Theoretical works under the model of circular restricted three-body problem were done. For the sun-earth+moon system, this model is a good approximation. The results obtained are useful when a transfer trajectory under the real solar system is designed
A tunable plasmonic refractive index sensor with nanoring-strip graphene arrays
In this paper, a tunable plasmonic refractive index sensor with
nanoring-strip graphene arrays is numerically investigated by the finite
difference time domain (FDTD) method. The simulation results exhibit that by
changing the sensing medium refractive index nmed of the structure, the sensing
range of the system is large. By changing the doping level ng, we noticed that
the transmission characteristics can be adjusted flexibly. The resonance
wavelength remains entirely the same and the transmission dip enhancement over
a big range of incidence angles [0,45] for both TM and TE polarizations, which
indicates that the resonance of the graphene nanoring-strip arrays is
insensitive to angle polarization. The above results are undoubtedly a new way
to realize various tunable plasmon devices, and may have a great application
prospect in biosensing, detection and imaging
Pressure-induced spin reorientation transition in layered ferromagnetic insulator Cr2Ge2Te6
Anisotropic magnetoresistance (AMR) of Cr2Ge2Te6 (CGT), a layered
ferromagnetic insulator, is investigated under an applied hydrostatic pressure
up to 2 GPa. The easy axis direction of the magnetization is inferred from the
AMR saturation feature in the presence and absence of the applied pressure. At
zero applied pressure, the easy axis is along the c-direction or perpendicular
to the layer. Upon application of a hydrostatic pressure>1 GPa, the uniaxial
anisotropy switches to easy-plane anisotropy which drives the equilibrium
magnetization from the c-axis to the ab-plane at zero magnetic field, which
amounts to a giant magnetic anisotropy energy change (>100%). As the
temperature is increased across the Curie temperature, the characteristic AMR
effect gradually decreases and disappears. Our first-principles calculations
confirm the giant magnetic anisotropy energy change with moderate pressure and
assign its origin to the increased off-site spin-orbit interaction of Te atoms
due to a shorter Cr-Te distance. Such a pressure-induced spin reorientation
transition is very rare in three-dimensional ferromagnets, but it may be common
to other layered ferromagnets with similar crystal structures to CGT, and
therefore offers a unique way to control magnetic anisotropy
Experimental Two-dimensional Quantum Walk on a Photonic Chip
Quantum walks, in virtue of the coherent superposition and quantum
interference, possess exponential superiority over its classical counterpart in
applications of quantum searching and quantum simulation. The quantum enhanced
power is highly related to the state space of quantum walks, which can be
expanded by enlarging the photon number and/or the dimensions of the evolution
network, but the former is considerably challenging due to probabilistic
generation of single photons and multiplicative loss. Here we demonstrate a
two-dimensional continuous-time quantum walk by using the external geometry of
photonic waveguide arrays, rather than the inner degree of freedoms of photons.
Using femtosecond laser direct writing, we construct a large-scale
three-dimensional structure which forms a two-dimensional lattice with up to
49X49 nodes on a photonic chip. We demonstrate spatial two-dimensional quantum
walks using heralded single photons and single-photon-level imaging. We analyze
the quantum transport properties via observing the ballistic evolution pattern
and the variance profile, which agree well with simulation results. We further
reveal the transient nature that is the unique feature for quantum walks of
beyond one dimension. An architecture that allows a walk to freely evolve in
all directions and a large scale, combining with defect and disorder control,
may bring up powerful and versatile quantum walk machines for classically
intractable problems.Comment: 7 pages, 4 figures. The experiment has been performed again with
heralded single photons instead of the coherent ligh
Plasmonic absorption characteristics based on dumbbell-shaped graphene metamaterial arrays
In this paper, we proposed a theoretical model in the far-infrared and
terahertz (THz) bands, which is a dumbbell-shaped graphene metamaterial arrays
with a combination of graphene nanorod and two semisphere-suspended heads. We
report a detailed theoretical investigation on how to enhance localized
electric field and the absorption in the dumbbell-shaped graphene metamaterial
arrays. The simulation results show that by changing the geometrical parameters
of the structure and the Fermi level of graphene, we can change the absorption
characteristics. Furthermore, we have discovered that the resonant wavelength
is insensitive to TM polarization. In addition, we also find that the
double-layer graphene arrays have better absorption characteristics than
single-layer graphene arrays. This work allows us to achieve tunable terahertz
absorber, and may also provide potential applications in optical filter and
biochemical sensing
- …
