6,581 research outputs found
HIF-1α Contributes to Hypoxia-induced Invasion and Metastasis of Esophageal Carcinoma via Inhibiting E-cadherin and Promoting MMP-2 Expression
Hypoxia-inducible factor-1α (HIF-1α) has been found to enhance tumor invasion and metastasis, but no study has reported its action in esophageal carcinoma. The goal of this study was to explore the probable mechanism of HIF-1α in the invasion and metastasis of esophageal carcinoma Eca109 cells in vitro and in vivo. mRNA and protein expression of HIF-1α, E-cadherin and matrix metalloproteinase-2 (MMP-2) under hypoxia were detected by RT-PCR and Western blotting. The effects of silencing HIF-1α on E-cadherin, MMP-2 mRNA and protein expression under hypoxia or normoxia were detected by RT-PCR and Western blotting, respectively. The invasive ability of Eca109 cells was tested using a transwell chambers. We established an Eca109-implanted tumor model and observed tumor growth and lymph node metastasis. The expression of HIF-1α, E-cadherin and MMP-2 in xenograft tumors was detected by Western blotting. After exposure to hypoxia, HIF-1α protein was up-regulated, both mRNA and protein levels of E-cadherin were down-regulated and MMP-2 was up-regulated, while HIF-1α mRNA showed no significant change. SiRNA could block HIF-1α effectively, increase E-cadherin expression and inhibit MMP-2 expression. The number of invading cells decreased after HIF-1α was silenced. Meanwhile, the tumor volume was much smaller, and the metastatic rate of lymph nodes and the positive rate were lower in vivo. Our observations suggest that HIF-1α inhibition might be an effective strategy to weaken invasion and metastasis in the esophageal carcinoma Eca109 cell line
Crystal Structure Manipulation of the Exchange Bias in an Antiferromagnetic Film
Exchange bias is one of the most extensively studied phenomena in magnetism,
since it exerts a unidirectional anisotropy to a ferromagnet (FM) when coupled
to an antiferromagnet (AFM) and the control of the exchange bias is therefore
very important for technological applications, such as magnetic random access
memory and giant magnetoresistance sensors. In this letter, we report the
crystal structure manipulation of the exchange bias in epitaxial hcp Cr2O3
films. By epitaxially growing twined (10-10) oriented Cr2O3 thin films, of
which the c axis and spins of the Cr atoms lie in the film plane, we
demonstrate that the exchange bias between Cr2O3 and an adjacent permalloy
layer is tuned to in-plane from out-of-plane that has been observed in (0001)
oriented Cr2O3 films. This is owing to the collinear exchange coupling between
the spins of the Cr atoms and the adjacent FM layer. Such a highly anisotropic
exchange bias phenomenon is not possible in polycrystalline films.Comment: To be published in Scientific Reports, 12 pages, 6 figure
A multiwavelength study of massive star-forming region IRAS 22506+5944
We present a multi-line study of the massive star-forming region IRAS
22506+5944. A new 6.7 GHz methanol maser was detected. 12CO, 13CO, C18O and
HCO+ J = 1-0 transition observations reveal a star formation complex consisting
mainly of two cores. The dominant core has a mass of more than 200 solar mass,
while another one only about 35 solar mass. Both cores are obviously at
different evolutionary stages. A 12CO energetic bipolar outflow was detected
with an outflow mass of about 15 solar mass.Comment: 9 pages, 4 figure
DNMT3a in the hippocampal CA1 is crucial in the acquisition of morphine self‐administration in rats
Drug‐reinforced excessive operant responding is one fundamental feature of long-lasting addiction‐like behaviors and relapse in animals. However, the transcriptional regulatory mechanisms responsible for the persistent drug‐specific (not natural rewards) operant behavior are not entirely clear. In this study, we demonstrate a key role for one of the de novo DNA methyltransferase, DNMT3a, in the acquisition of morphine self‐administration (SA) in rats. The expression of DNMT3a in the hippocampal CA1 region but not in the nucleus accumbens shell was significantly up‐regulated after 1‐ and 7‐day morphine SA (0.3 mg/kg/infusion) but not after the yoked morphine injection. On the other hand, saccharin SA did not affect the expression of DNMT3a or DNMT3b. DNMT inhibitor 5‐aza‐2‐deoxycytidine (5‐aza) microinjected into the hippocampal CA1 significantly attenuated the acquisition of morphine SA. Knockdown of DNMT3a also impaired the ability to acquire the morphine SA. Overall, these findings suggest that DNMT3a in the hippocampus plays an important role in the acquisition of morphine SA and may be a valid target to prevent the development of morphine addiction.
Includes Supplemental informatio
- …
