509 research outputs found
Structural and crystal-chemical characteristics of the apatite deposits from human aortic walls
Thermal behavior of biological apatite is the object of several studies. Crystal size, carbonate content, phase composition, and other parameters change during annealing up to 900 °C in biological minerals with apatite structure. The way these parameters change reflects the specific properties of the initial bioapatite. This work presents data on thermal transformations of pathological bioapatite from the human cardiovascular system, namely aortic wall deposits. Some minor elements, foreign to calcium hydroxyapatite (e.g., Na and Mg), can be both incorporated in the apatite structure and localized in the surface layers of crystals, modifying functions of the mineral. A new approach was proposed to determine the predominant location of minor elements, such as Mg, Na, and K, in the mineral of pathological deposits. Mg and Na in pathological apatite can be in both structurally bound (substituting calcium in lattice) and labile (localized on the crystal surface) states, while K is not able to join the apatite structure in significant amount or be chemically bound to it. This approach, based on atomic spectrometry, can be used effectively in combination with a set of traditional techniques, such as like EDS, IRS, and XRD
Preparation of hydroxyapatite ceramic through centrifugal casting process using ultra-fine spherical particles as precursor and its decomposition at high temperatures
COVID-19 causes record decline in global CO2 emissions
The considerable cessation of human activities during the COVID-19 pandemic
has affected global energy use and CO2 emissions. Here we show the
unprecedented decrease in global fossil CO2 emissions from January to April
2020 was of 7.8% (938 Mt CO2 with a +6.8% of 2-{\sigma} uncertainty) when
compared with the period last year. In addition other emerging estimates of
COVID impacts based on monthly energy supply or estimated parameters, this
study contributes to another step that constructed the near-real-time daily CO2
emission inventories based on activity from power generation (for 29
countries), industry (for 73 countries), road transportation (for 406 cities),
aviation and maritime transportation and commercial and residential sectors
emissions (for 206 countries). The estimates distinguished the decline of CO2
due to COVID-19 from the daily, weekly and seasonal variations as well as the
holiday events. The COVID-related decreases in CO2 emissions in road
transportation (340.4 Mt CO2, -15.5%), power (292.5 Mt CO2, -6.4% compared to
2019), industry (136.2 Mt CO2, -4.4%), aviation (92.8 Mt CO2, -28.9%),
residential (43.4 Mt CO2, -2.7%), and international shipping (35.9Mt CO2,
-15%). Regionally, decreases in China were the largest and earliest (234.5 Mt
CO2,-6.9%), followed by Europe (EU-27 & UK) (138.3 Mt CO2, -12.0%) and the U.S.
(162.4 Mt CO2, -9.5%). The declines of CO2 are consistent with regional
nitrogen oxides concentrations observed by satellites and ground-based
networks, but the calculated signal of emissions decreases (about 1Gt CO2) will
have little impacts (less than 0.13ppm by April 30, 2020) on the overserved
global CO2 concertation. However, with observed fast CO2 recovery in China and
partial re-opening globally, our findings suggest the longer-term effects on
CO2 emissions are unknown and should be carefully monitored using multiple
measures
Isocorydine Inhibits Cell Proliferation in Hepatocellular Carcinoma Cell Lines by Inducing G2/M Cell Cycle Arrest and Apoptosis
The treatment of human hepatocellular carcinoma (HCC) cell lines with (+)-isocorydine, which was isolated and purified from Papaveraceae sp. plants, resulted in a growth inhibitory effect caused by the induction of G2/M phase cell cycle arrest and apoptosis. We report that isocorydine induces G2/M phase arrest by increasing cyclin B1 and p-CDK1 expression levels, which was caused by decreasing the expression and inhibiting the activation of Cdc25C. The phosphorylation levels of Chk1 and Chk2 were increased after ICD treatment. Furthermore, G2/M arrest induced by ICD can be disrupted by Chk1 siRNA but not by Chk2 siRNA. In addition, isocorydine treatment led to a decrease in the percentage of CD133+ PLC/PRF/5 cells. Interestingly, isocorydine treatment dramatically decreased the tumorigenicity of SMMC-7721 and Huh7 cells. These findings indicate that isocorydine might be a potential therapeutic drug for the chemotherapeutic treatment of HCC
Tribological Behavior of Si 3
The tribological performance of Si3N4 ball sliding against Ti3SiC2 disc lubricated by lithium-based ionic liquids (ILs) was investigated using an Optimol SRV-IV oscillating reciprocating friction and wear tester at room temperature (RT) and elevated temperature (100°C). Glycerol and the conventional imidazolium-based IL 1-hexyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide (L-F106) were used as references under the same experimental conditions. The results show that the lithium-based ILs had higher thermal stabilities than glycerol and lower costs associated with IL preparation than L-F106. The tribotest results show that the lithium-based ILs were effective in reducing the friction and wear of Si3N4/Ti3SiC2 contacts. [Li(urea)]TFSI even produced better tribological properties than glycerol and L-F106 both at RT and 100°C. The SEM/EDS and XPS results reveal that the excellent tribological endurance of Si3N4/Ti3SiC2 contacts lubricated by lithium-based ILs was mainly attributed to the formation of surface protective films composed of various tribochemical products
Altered microRNA expression profile with miR-146a upregulation in CD4+ T cells from patients with rheumatoid arthritis
Introduction: Increasing evidence indicates that microRNAs (miRNAs) play a critical role in the pathogenesis of inflammatory diseases. The aim of the study was to investigate the expression pattern and function of miRNAs in CD4 + T cells from patients with rheumatoid arthritis (RA).Methods: The expression profile of miRNAs in CD4 + T cells from synovial fluid (SF) and peripheral blood of 33 RA patients was determined by microarray assay and validated by qRT-PCR analysis. The correlation between altered expression of miRNAs and cytokine levels was determined by linear regression analysis. The role of miR-146a overexpression in regulating T cell apoptosis was evaluated by flow cytometry. A genome-wide gene expression analysis was further performed to identify miR-146a-regulated genes in T cells.Results: miRNA expression profile analysis revealed that miR-146a expression was significantly upregulated while miR-363 and miR-498 were downregulated in CD4 + T cells of RA patients. The level of miR-146a expression was positively correlated with levels of tumor necrosis factor-alpha (TNF-α), and in vitro studies showed TNF-α upregulated miR-146a expression in T cells. Moreover, miR-146a overexpression was found to suppress Jurkat T cell apoptosis. Finally, transcriptome analysis of miR-146a overexpression in T cells identified Fas associated factor 1 (FAF1) as a miR-146a-regulated gene, which was critically involved in modulating T cell apoptosis.Conclusions: We have detected increased miR-146a in CD4 + T cells of RA patients and its close correlation with TNF-α levels. Our findings that miR-146a overexpression suppresses T cell apoptosis indicate a role of miR-146a in RA pathogenesis and provide potential novel therapeutic targets. © 2010 Li et al.; licensee BioMed Central Ltd. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.published_or_final_versio
- …
