374 research outputs found

    Contrasting response of coexisting plant's water-use patterns to experimental precipitation manipulation in an alpine grassland community of Qinghai Lake watershed, China

    Get PDF
    Understanding species-specific changes in water-use patterns under recent climate scenarios is necessary to predict accurately the responses of seasonally dry ecosystems to future climate. In this study, we conducted a precipitation manipulation experiment to investigate the changes in water-use patterns of two coexisting species (Achnatherum splendens and Allium tanguticum) to alterations in soil water content (SWC) resulting from increased and decreased rainfall treatments. The results showed that the leaf water potential (Psi) of A. splendens and A. tanguticum responded to changes in shallow and middle SWC at both the control and treatment plots. However, A. splendens proportionally extracted water from the shallow soil layer (0-10cm) when it was available but shifted to absorbing deep soil water (30-60 cm) during drought. By contrast, the A. tanguticum did not differ significantly in uptake depth between treatment and control plots but entirely depended on water from shallow soil layers. The flexible water-use patterns of A. splendens may be a key factor facilitating its dominance and it better acclimates the recent climate change in the alpine grassland community around Qinghai Lake

    A Deductive Approach towards Reasoning about Algebraic Transition Systems

    Get PDF
    Algebraic transition systems are extended from labeled transition systems by allowing transitions labeled by algebraic equations for modeling more complex systems in detail. We present a deductive approach for specifying and verifying algebraic transition systems. We modify the standard dynamic logic by introducing algebraic equations into modalities. Algebraic transition systems are embedded in modalities of logic formulas which specify properties of algebraic transition systems. The semantics of modalities and formulas is defined with solutions of algebraic equations. A proof system for this logic is constructed to verify properties of algebraic transition systems. The proof system combines with inference rules decision procedures on the theory of polynomial ideals to reduce a proof-search problem to an algebraic computation problem. The proof system proves to be sound but inherently incomplete. Finally, a typical example illustrates that reasoning about algebraic transition systems with our approach is feasible

    Algorithmic Information Disclosure in Optimal Auctions

    Full text link
    This paper studies a joint design problem where a seller can design both the signal structures for the agents to learn their values, and the allocation and payment rules for selling the item. In his seminal work, Myerson (1981) shows how to design the optimal auction with exogenous signals. We show that the problem becomes NP-hard when the seller also has the ability to design the signal structures. Our main result is a polynomial-time approximation scheme (PTAS) for computing the optimal joint design with at most an ϵ\epsilon multiplicative loss in expected revenue. Moreover, we show that in our joint design problem, the seller can significantly reduce the information rent of the agents by providing partial information, which ensures a revenue that is at least 11e1 - \frac{1}{e} of the optimal welfare for all valuation distributions

    Approximate Analyzing of Labeled Transition Systems

    Get PDF
    As the most important formal semantic model, labeled transition systems are widely used, which can describe the general concurrent systems or control systems without disturbance. However, under normal circumstance, transition systems are complex and difficult to use due to large amount of calculation and the state space explosion problems. In order to overcome these problems, approximate equivalent labeled transition systems are proposed by means of incomplete low-up matrix decomposition factorization. This technique can reduce the complexity of computation and calculate under the allowing errors. As for continuous-time linear systems, we develop a modeling method of approximated transition system based on the approximate solution of matrix, which provides a facility for approximately formal semantic modeling for linear systems and to effectively analyze errors. An example of application in the context of linear systems without disturbances is studied

    A Power Effective Algorithm for State Encoding

    Get PDF
    Reducing the area and power dissipation of FSM circuit is of significant importance for EDA technology. Many methods are adopted to achieve an effective and fast transformation of FSMs to binary codes, including Genetic algorithm (GA) and others. In this paper, we propose a GA based state assignment of a FSM circuit to gain the minimization of power consumption and area. We modify the traditional mutation to be an ordered operation, which is also a substitution of the crossover that guarantees every new individual owns better fitness than the old one. We test the proposed algorithm with benchmarks, as well as do the comparison with the published; our method saves both power and area dissipation in reasonable computation time. DOI: http://dx.doi.org/10.11591/telkomnika.v12i6.548

    Random Order Vertex Arrival Contention Resolution Schemes for Matching, with Applications

    Get PDF

    Eliciting Thinking Hierarchy without Prior

    Full text link
    When we use the wisdom of the crowds, we usually rank the answers according to their popularity, especially when we cannot verify the answers. However, this can be very dangerous when the majority make systematic mistakes. A fundamental question arises: can we build a hierarchy among the answers \textit{without any prior} where the higher-ranking answers, which may not be supported by the majority, are from more sophisticated people? To address the question, we propose 1) a novel model to describe people's thinking hierarchy; 2) two algorithms to learn the thinking hierarchy without any prior; 3) a novel open-response based crowdsourcing approach based on the above theoretic framework. In addition to theoretic justifications, we conduct four empirical crowdsourcing studies and show that a) the accuracy of the top-ranking answers learned by our approach is much higher than that of plurality voting (In one question, the plurality answer is supported by 74 respondents but the correct answer is only supported by 3 respondents. Our approach ranks the correct answer the highest without any prior); b) our model has a high goodness-of-fit, especially for the questions where our top-ranking answer is correct. To the best of our knowledge, we are the first to propose a thinking hierarchy model with empirical validations in the general problem-solving scenarios; and the first to propose a practical open-response based crowdsourcing approach that beats plurality voting without any prior

    Research on Design Method of Long-life Asphalt Pavement

    Get PDF
    In recent years, the problem of early damage of asphalt pavement has been basically solved, and the service performance has been improved, but there are still some deficiencies in design life and service life. This paper investigates the long-life asphalt pavement structure, analyzes the design method of asphalt mixture, and summarizes the pavement design theory and related software. The long-life asphalt pavement with semi-rigid base, flexible base and combined base structure has been designed by four method, including typical load, Per-Road, D50-2006 and D50-2017. Four methods were compared by designing long-life pavements with semi-rigid base and flexible base. The results show that the proposed asphalt pavement structure can meet the requirements of Per-Road, typical load design and D50-2006. However, D50-2017 has higher requirements for the bending and tensile fatigue life of the base layer and requires a thicker base layer. When d50-2017 is used to design flexible base pavement, the fatigue life of asphalt layer should be the main control index, and the fatigue life of sub base course should be the main control index in other pavement de-sign. It remains to be seen whether the proposed highway structure can achieve the design goal of long-life asphalt pavement

    Research on Design Method of Long-life Asphalt Pavement

    Get PDF
    In recent years, the problem of early damage of asphalt pavement has been basically solved, and the service performance has been improved, but there are still some deficiencies in design life and service life. This paper investigates the long-life asphalt pavement structure, analyzes the design method of asphalt mixture, and summarizes the pavement design theory and related software. The long-life asphalt pavement with semi-rigid base, flexible base and combined base structure has been designed by four method, including typical load, Per-Road, D50-2006 and D50-2017. Four methods were compared by designing long-life pavements with semi-rigid base and flexible base. The results show that the proposed asphalt pavement structure can meet the requirements of Per-Road, typical load design and D50-2006. However, D50-2017 has higher requirements for the bending and tensile fatigue life of the base layer and requires a thicker base layer. When d50-2017 is used to design flexible base pavement, the fatigue life of asphalt layer should be the main control index, and the fatigue life of sub base course should be the main control index in other pavement de-sign. It remains to be seen whether the proposed highway structure can achieve the design goal of long-life asphalt pavement
    corecore