164 research outputs found
Synthesis of Ti(SO4)O solid acid nano-catalyst and its application for biodiesel production from used cooking oil
A novel solid acid nano-catalyst [Ti(SO4)O] was synthesised and used for the simultaneous esterification and transesterification of free fatty acids in used cooking oil (UCO) to produce biodiesel. The synthesised nano-catalyst was fully characterized by different analytical techniques. The XPS results clearly confirmed that the bidentate sulphate coordinated to the Ti4+ metal in the nano-catalyst product. Obtained d-spacing values from the experimental data of XRD peaks and the SAED pattern of produced nano-catalyst agreed well with the d-spacing values from the JCPDS-ICDD card numbers 04-011-4951 for titanium sulphate oxide or titanium oxysulfate crystal structures.This confirms the sulphate groups were within the crystalline structure rather than on the surface of titania nanoparticles, which has not been previously reported. It has been demonstrated 97.1% yield for the fatty acid methyl ester can be achieved usign the synthetised catalyst under a reaction time of 3 h, catalyst to UCO ration of 1.5 wt% and methanol to UCO ratio of 9:1 at 75 °C reaction temperature. The nano-catalyst showed a good catalytic activity for the feedstock containing ≤6 wt% free fatty acid. Furthermore, the catalytic activity and re-usability of the Ti(SO4)O for the esterification/transesterification of UCO were investigated. XRD results confirmed that the amount of View the MathML source species in the solid acid nano-catalyst slowly decreased with re-use after 8 cycles under optimised conditions, which is higher than the reusability of other functionalised titania reported in the literature. Finally, the biodiesel prodcued from this process satisfied the ASTM and European Norm standards
Nanostructured AgBr loaded TiO2: An efficient sunlight active photocatalyst for degradation of Reactive Red 120
The AgBr loaded TiO2 catalyst was prepared by a feasible approach with AgBr and tetraisopropyl orthotitanate and characterized by BET surface area measurement, diffuse reflectance spectra (DRS), scanning electron microscope (SEM), energy dispersive spectra (EDS), X-ray diffraction (XRD), transmission electron microscope (TEM) and atomic force microscope (AFM) analysis. The results of characterization reveal that AgBr loaded TiO2 has a nanostructure. Formation of the nanostructure in AgBr loaded TiO2 results in substantial shifting of the absorption edge of TiO2 to red and enhancement of visible light absorption. Electrochemical impedance spectroscopy measurements reveal that AgBr loaded TiO2 has a higher photoconductivity than prepared TiO2 due to higher separation efficiency of electron-hole pairs. Cyclic voltammetric studies reveal enhanced conductivity in AgBr loaded TiO2, which causes an increase in its photocatalytic activity. AgBr loaded TiO2 exhibited a higher photocatalytic activity than TiO2-P25 and prepared TiO2 in the photodegradation of Reactive Red 120 (RR 120)
Studies on design of heterogeneous catalysts for biodiesel production
The production of biodiesel is gaining momentum with the ever increasing demand of the fuel. Presently, limited literature is available with respect to well designed solid heterogeneous catalyst for biodiesel production considering all the characteristics, process and operation parameters. Hence, a study was conducted to design effective heterogeneous catalyst for biodiesel production. Further, the significant impact of different catalysts, different feed stock, various reaction conditions such as temperature, methanol oil molar ratio, catalyst concentrations and stability/inactivation of the catalysts, are detailed out for transesterification process of biodiesel production. Based on the studies it can be concluded that well designed heterogeneous catalyst can yield high throughput of biodiesel
Optical Properties of the Carbon-Modified TiO2 Prepared by Microwave Carbonization Process
The carbon-modified TiO2 were synthesized through microwave carbonization of ethanol by using a domestic microwave oven. This process enabled to form the carbonaceous compounds on the surface of TiO2 and created several new mid-gap bands into the original bandgap within few minutes operation. The sample showed a remarkable visible-light absorption even at the wavelength of around 800 nm. The promotion of photocatalytic activity under visible and ultraviolet (UV) light irradiation were also confirmed by the I3- formation in KI aqueous solution. The I3- formation rate of carbon-modified TiO2 per unit mass under visible light is almost 25 times higher than that of pure TiO2. The mid-gap optical absorption mechanisms were investigated through analysis of absorption edges. It is revealed that surface state change against microwave-treatment time results in different mid-gap optical absorption processes
シュジュ ノ コウゾウ オ モツ キンゾク サンカブツ ナノ コウゾウタイ ノ チョウセイ ト ヒカリ ショクバイ スイソ ハッセイ ハンノウ エ ノ リヨウ
京都大学0048新制・課程博士博士(エネルギー科学)甲第14181号エネ博第183号新制||エネ||42(附属図書館)UT51-2008-N498京都大学大学院エネルギー科学研究科エネルギー基礎科学専攻(主査)教授 吉川 暹, 教授 八尾 健, 教授 石原 慶一学位規則第4条第1項該当Doctor of Energy ScienceKyoto UniversityDA
Fabrication of Size-controllable Flower-like TiO2 and its Photocatalytic Activity
Abstract not Available.</jats:p
Photocatalytic Hydrogen Evolution over Tantalate Photocatalysts
ABSTRACTTantalate and titanate photocatalysts were prepared by solid-state reaction at 1273 K using various ratios of SrCO3, Ta2O5, and TiO2 as starting materials. The prepared solid photocatalysts were characterized using XRD and SEM analysis. These prepared tantalate and titanate photocatalysts showed high photocatalytic H2 evolution activity by water splitting without co-catalyst loading. The highest H2 evolution rate of prepared photocatalysts was found to be 138 μmolh−1 with the starting materials ratio of 2/0.5/1.5 (Sr/Ta/Ti; mol). Furthermore, this photocatalyst showed photocatalytic activity for H2 evolution from distilled water.</jats:p
Photocatalytic Activity for Hydrogen Evolution of Electrospun TiO<sub>2</sub> Nanofibers
High emissivity cerium oxide coating
The present invention relates to a coating composition comprising: IO to 80 wt% of cerium oxide comprising a dopant based upon the total weight of the composition, wherein said dopant is selected from iron oxide, cobalt oxide, chromium oxide, lanthanum oxide, or mixtures thereof, and the atomic ratio of dopant metal to cerium is in the range 0.01:l to 0.5:l; and IO to 50 wt% of binder based upon the total weight of the composition
- …
