141 research outputs found

    NADPH oxidase 5 (NOX5)-induced reactive oxygen signaling modulates normoxic HIF-1α and p27

    Get PDF
    NADPH oxidase 5 (NOX5) generated reactive oxygen species (ROS) have been implicated in signaling cascades that regulate cancer cell proliferation. To evaluate and validate NOX5 expression in human tumors, we screened a broad range of tissue microarrays (TMAs), and report substantial overexpression of NOX5 in malignant melanoma and cancers of the prostate, breast, and ovary. In human UACC-257 melanoma cells that possesses high levels of functional endogenous NOX5, overexpression of NOX5 resulted in enhanced cell growth, increased numbers of BrdU positive cells, and increased γ-H2AX levels. Additionally, NOX5-overexpressing (stable and inducible) UACC-257 cells demonstrated increased normoxic HIF-1α expression and decreased p2

    Saturation Diving Alters Folate Status and Biomarkers of DNA Damage and Repair

    Get PDF
    Exposure to oxygen-rich environments can lead to oxidative damage, increased body iron stores, and changes in status of some vitamins, including folate. Assessing the type of oxidative damage in these environments and determining its relationships with changes in folate status are important for defining nutrient requirements and designing countermeasures to mitigate these effects. Responses of humans to oxidative stressors were examined in participants undergoing a saturation dive in an environment with increased partial pressure of oxygen, a NASA Extreme Environment Mission Operations mission. Six participants completed a 13-d saturation dive in a habitat 19 m below the ocean surface near Key Largo, FL. Fasting blood samples were collected before, twice during, and twice after the dive and analyzed for biochemical markers of iron status, oxidative damage, and vitamin status. Body iron stores and ferritin increased during the dive (P<0.001), with a concomitant decrease in RBC folate (P<0.001) and superoxide dismutase activity (P<0.001). Folate status was correlated with serum ferritin (Pearson r = −0.34, P<0.05). Peripheral blood mononuclear cell poly(ADP-ribose) increased during the dive and the increase was significant by the end of the dive (P<0.001); γ-H2AX did not change during the mission. Together, the data provide evidence that when body iron stores were elevated in a hyperoxic environment, a DNA damage repair response occurred in peripheral blood mononuclear cells, but double-stranded DNA damage did not. In addition, folate status decreases quickly in this environment, and this study provides evidence that folate requirements may be greater when body iron stores and DNA damage repair responses are elevated

    Translational Research in Molecular Diagnostics of Infectious Disease

    No full text

    Serum variables related to oxidative damage, iron status, DNA damage, and vitamin metabolism before, during, and after a 13-d saturation dive in humans<sup>1</sup>.

    No full text
    1<p>Data are means ± SD, <i>n</i> = 6.</p>2,3,4<p>Significant effect of time, <sup>2</sup><i>P</i><0.05, <sup>3</sup><i>P</i><0.01, <sup>4</sup><i>P</i><0.001.</p><p>In each row, means without a common letter differ (<i>P</i><.05) after a post hoc Bonferroni <i>t</i> test.</p
    corecore