250 research outputs found
The Neuroprotection of KIBRA in Promoting Neuron Survival and Against Amyloid β-Induced Apoptosis
Background: Recent research has identified the nucleotide polymorphisms of KIdney and BRAin expressed protein (KIBRA) to be associated with cognitive performance, suggesting its vital role in Alzheimer’s disease (AD); however, the underlying molecular mechanism of KIBRA in AD remains obscure.Methods: The AD animal model (APP/PS1 transgenic mice) and KIBRA knockout (KIBRA KO) mice were used to investigate pathophysiological changes of KIBRA in vivo. Mouse hippocampal cell line (HT22) was used to explore its molecular mechanism through KIBRA CRISPR/Cas9-sgRNA system and KIBRA overexpression lentivirus in vitro.Results: Aged APP/PS1 mice displayed increased neuronal apoptosis in the hippocampus, as did KIBRA KO mice. KIBRA deficiency was closely related to neuronal loss in the brain. In addition, knockdown of KIBRA in neuronal cell lines suppressed its growth and elevated apoptosis-associated protein levels under the stress of Aβ1–42 oligomers. On the contrary, overexpression of KIBRA significantly promoted cell proliferation and reduced its apoptosis. Moreover, through screening several survival-related signaling pathways, we found that KIBRA inhibited apoptosis by activating the Akt pathway other than ERK or PKC pathways, which was further confirmed by Akt-specific inhibitor MK2206.Conclusion: Our data indicate that KIBRA may function as a neuroprotective gene in promoting neuron survival and inhibiting Aβ-induced neuronal apoptosis
Effects of grazing intensity on soil labile organic carbon fractions in a desert steppe area in Inner Mongolia
Abstract
Grazing can cause changes in soil carbon (C) level. This study aimed to elucidate the response of soil labile organic carbon (SLOC) under four different grazing intensities: non grazing (NG), 0 sheep·ha-1; light grazing (LG), 0.91 sheep·ha-1; moderate grazing (MG), 1.82 sheep·ha-1, and heavy grazing (HG), 2.73 sheep·ha-1. Results showed that there was no significant difference in total soil organic carbon (TOC) and soil inorganic carbon (SIC) content from three soil depths (0-15 cm, 15-30 cm, and 30-45 cm) under different grazing intensities. However, the SLOC including particulate organic carbon (POC), light fraction organic carbon (LFOC), and readily oxidizable carbon (ROC) content at a depth of 0-15 cm decreased with the increasing grazing intensity among LG, MG and HG. The SLOC content at depths of 15-30 cm under the NG and LG were significantly higher than that under the MG and the HG. The TOC and SLOC content decreased with increasing depths of soil horizons, but SIC content increased. The variation trend of the density of different soil carbon fractions and the ratio of individual SLOC fractions to TOC were similar to that of the soil carbon content of corresponding fractions. These results indicated that MG and HG treatments caused C loss at 0-30 cm; and SLOC was more sensitive than TOC in response to different grazing intensities.</jats:p
Cultivation of the microalga, Chlorella pyrenoidosa, in biogas wastewater
Biogas wastewater is always a problem as a result of its extremely high concentrations of nitrogen and phosphorus, which is the main reason for the eutrophication of the surrounding water. The microalga, Chlorella pyrenoidosa, can utilize the nitrogen and phosphorus in wastewater for its growth. Therefore, the microalga was introduced to be cultivated in the biogas wastewater, which could not only bioremediate the wastewater, but also produce plenty of the microalga biomass that could be used for the exploitation of fertilizers, feed additives and biofuels. This study showed that the microalga, C. pyrenoidosa could grow well in the biogas wastewater under optimal condition: initial cell density of 0.15 (OD(680)), pH 8 and illumination intensity of 10000 LX. Under the optimal condition, the dry cell weight of the microalgae reached 0.1 g/L after cultivation in the wastewater for fourteen (14) days; in the meantime, the microalga also removed 71.8% of phosphorus, 100% of ammoniacal nitrogen (NH(4)(+)-N), 52.8% of nitrate nitrogen (NO(3)-N) and 23.0% of nitrite nitrogen (NO(2)-N) from the biogas wastewater, suggesting that the cultivation of C. pyrenoidosa in biogas wastewater would be efficient for the treatment of wastewater. This study also provided a low-cost way to produce the microalga and its relevant products.Key Scientific and Technological Project of Fujian Province[2010Y0039]; Spark Project of Fujian Province[2010S0068]; Foundation for Innovative Research Team of Jimei University, China[2010A004
Computational insights into charge storage mechanisms of supercapacitors
Computational modeling methods, including molecular dynamics (MD) and Monte Carlo (MC) simulations, and density functional theory (DFT), are receiving booming interests for exploring charge storage mechanisms of electrochemical energy storage devices. These methods can effectively be used to obtain molecular scale local information or provide clear explanations for novel experimental findings that cannot be directly interpreted through experimental investigations. This short review is dedicated to emphasizing recent advances in computational simulation methods for exploring the charge storage mechanisms in typical nanoscale materials, such as nanoporous carbon materials, 2D MXene materials, and metal-organic framework electrodes. Beyond a better understanding of charge storage mechanisms and experimental observations, fast and accurate enough models would be helpful to provide theoretical guidance and experimental basis for the design of new high-performance electrochemical energy storage devices
Active YAP promotes pancreatic cancer cell motility, invasion and tumorigenesis in a mitotic phosphorylation-dependent manner through LPAR3.
The transcriptional co-activator Yes-associated protein, YAP, is a main effector in the Hippo tumor suppressor pathway. We recently defined a mechanism for positive regulation of YAP through CDK1-mediated mitotic phosphorylation. Here, we show that active YAP promotes pancreatic cancer cell migration, invasion and anchorage-independent growth in a mitotic phosphorylation-dependent manner. Mitotic phosphorylation is essential for YAP-driven tumorigenesis in animals. YAP reduction significantly impairs cell migration and invasion. Immunohistochemistry shows significant upregulation and nuclear localization of YAP in metastases when compared with primary tumors and normal tissue in human. Mitotic phosphorylation of YAP controls a unique transcriptional program in pancreatic cells. Expression profiles reveal LPAR3 (lysophosphatidic acid receptor 3) as a mediator for mitotic phosphorylation-driven pancreatic cell motility and invasion. Together, this work identifies YAP as a novel regulator of pancreatic cancer cell motility, invasion and metastasis, and as a potential therapeutic target for invasive pancreatic cancer
Effects of functional groups and anion size on the charging mechanisms in layered electrode materials
Highlights : We have conducted molecular simulations on 20 model supercapacitors systems based on graphene or MXene electrodes, with different functional groups, and 5 neat ionic liquids, with different anions.When charging negatively, the electrodes expand and no major dependence on the anion type is observed. When charging positively, the volume changes are more complex.Volume changes are generally very well correlated with the quantities of adsorbed ions, except for the largest anions for which ion reorientations affect the interlayer spacing.We demonstrate that the charging mechanisms are largely correlated with the anion sizes and the surface charge of the electrode material in the uncharged state
Unraveling the Charge Storage Mechanism of Ti3C2Tx MXene Electrode in Acidic Electrolyte
Two-dimensional Ti3C2Tx MXenes have been extensively studied as pseudocapacitive electrode materials. This Letter aims at providing further insights into the charge storage mechanism of the Ti3C2Tx MXene electrode in the acidic electrolyte by combining experimental and simulation approaches. Our results show that the presence of H2O molecules between the MXene layers plays a critical role in the pseudocapacitive behavior, providing a pathway for proton transport to activate the redox reaction of the Ti atoms. Also, thermal annealing of the samples at different temperatures suggests that the presence of the confined H2O molecules is mainly controlled by the surface termination groups. These findings pave the way for alternative strategies to enhance the high-rate performance of MXenes electrodes by optimizing their surface termination groups
Synthesis of porous NiO nanocrystals with controllable surface area and their application as supercapacitor electrodes
We report a facile way to grow various porous NiO nanostructures including nanoslices, nanoplates, and nanocolumns, which show a structure-dependence in their specific charge capacitances. The formation of controllable porosity is due to the dehydration and re-crystallization of β-Ni(OH)2 nanoplates synthesized by a hydrothermal process. Thermogravimetric analysis shows that the decomposition temperature of the β-Ni(OH)2 nanostructures is related to their morphology. In electrochemical tests, the porous NiO nanostructures show stable cycling performance with retention of specific capacitance over 1000 cycles. Interestingly, the formation
of nanocolumns by the stacking of β-Ni(OH)2 nanoslices/plates favors the creation of small pores in the NiO nanocrystals obtained after annealing, and the surface area is over five times larger than that of NiO nanoslices and nanoplates. Consequently, the specific capacitance of the porous NiO nanocolumns (390 F/g) is significantly higher than that of the nanoslices (176 F/g) or nanoplates (285 F/g) at a discharge current of 5 A/g. This approach provides a clear illustration of the process–structure–property relationship in nanocrystal synthesis and potentially
offers strategies to enhance the performance of supercapacitor electrodes.Published versio
- …
