8,777 research outputs found
Treehoppers (Hemiptera: Aetalionidae and Membracidae) from Madre de Dios region, Peru
A list of treehoppers (Aetalionidae and Membracidae) is presented from Madre de Dios region at the southeastern Amazon basin in Peru. The treehopper specimens were collected as by-catch in a survey of the beetles in the Villa Carmen Biological Station and Los Amigos Biological Station. The list comprises 44 species, 31 genera, 16 tribes and 9 subfamilies. Ten genera are new records to Peru. The images of representative specimens of each identified species and genera are provided to facilitate the identification of the local treehopper fauna.
Resumen: Se presenta una lista de los membrácidos (Aetalionidae y Membracidae) de la región Madre de Dios, en el sureste de la cuenca Amazónica, en Perú. La lista está basada en especímenes recolectados como captura fortuita en un inventario de escarabajos en las estaciones biológicas Villa Carmen y Los Amigos. La lista incluye 44 especies, 31 géneros, 16 tribus y 9 subfamilias. Diez géneros son nuevos registros para Perú. Se presentan las imágenes de especímenes representativos de cada especie y género para facilitar la identifición de la fauna local de los membrácidos
Growth and characterization of BaZnGa
We report the growth, structure and characterization of BaZnGa, identifying
it as the sole known ternary compound in the Ba-Zn-Ga system. Single crystals
of BaZnGa can be grown out of excess Ba-Zn and adopt a tI36 structure type.
There are three unique Ba sites and three M\,=\,Zn/Ga sites. Using DFT
calculations we can argue that whereas one of these three M sites is probably
solely occupied by Ga, the other two M sites, most likely, have mixed Zn/Ga
occupancy. Temperature dependent resistivity and magnetization measurements
suggest that BaZnGa is a poor metal with no electronic or magnetic phase
transitions between 2\,K and 300\,K
Fragility of Fermi arcs in Dirac semimetals
We use tunable, vacuum ultraviolet laser-based angle-resolved photoemission
spectroscopy and density functional theory calculations to study the electronic
properties of Dirac semimetal candidate cubic PtBi. In addition to bulk
electronic states we also find surface states in PtBi which is expected
as PtBi was theoretical predicated to be a candidate Dirac semimetal.
The surface states are also well reproduced from DFT band calculations.
Interestingly, the topological surface states form Fermi contours rather than
double Fermi arcs that were observed in NaBi. The surface bands forming the
Fermi contours merge with bulk bands in proximity of the Dirac points
projections, as expected. Our data confirms existence of Dirac states in
PtBi and reveals the fragility of the Fermi arcs in Dirac semimetals.
Because the Fermi arcs are not topologically protected in general, they can be
deformed into Fermi contours, as proposed by [Kargarian {\it et al.}, PNAS
\textbf{113}, 8648 (2016)]. Our results demonstrate validity of this theory in
PtBi.Comment: 6 pages, 4 figure
Ludwigia octovalvis extract improves glycemic control and memory performance in diabetic mice
Ethnopharmacological relevance
Ludwigia octovalvis (Jacq.) P.H. Raven (Onagraceae) extracts have historically been consumed as a healthful drink for treating various conditions, including edema, nephritis, hypotension and diabetes.
Aim of the study
We have previously shown that Ludwigia octovalvis extract (LOE) can significantly extend lifespan and improve age-related memory deficits in Drosophila melanogaster through activating AMP-activated protein kinase (AMPK). Since AMPK has become a critical target for treating diabetes, we herein investigate the anti-hyperglycemic potential of LOE.
Materials and methods
Differentiated C2C12 muscle cells, HepG2 hepatocellular cells, streptozotocin (STZ)-induced diabetic mice and high fat diet (HFD)-induced diabetic mice were used to investigate the anti-hyperglycemic potential of LOE. The open field test and novel object recognition test were used to evaluate spontaneous motor activity and memory performance of HFD-induced diabetic mice.
Results
In differentiated C2C12 muscle cells and HepG2 hepatocellular cells, treatments with LOE and its active component (β-sitosterol) induced significant AMPK phosphorylation. LOE also enhanced uptake of a fluorescent glucose derivative (2-NBDG) and inhibited glucose production in these cells. The beneficial effects of LOE were completely abolished when an AMPK inhibitor, dorsomorphin, was added to the culture system, suggesting that LOE requires AMPK activation for its action in vitro. In streptozotocin (STZ)-induced diabetic mice, we found that both LOE and β-sitosterol induced an anti-hyperglycemic effect comparable to that of metformin, a drug that is commonly prescribed to treat diabetes. Moreover, LOE also improved glycemic control and memory performance of mice fed a HFD.
Conclusions
These results indicate that LOE is a potent anti-diabetic intervention that may have potential for future clinical applications
Fluorescence lifetime spectroscopy of tissue autofluorescence in normal and diseased colon measured ex vivo using a fiber-optic probe
We present an ex vivo study of temporally and spectrally resolved autofluorescence in a total of 47 endoscopic excision biopsy/resection specimens from colon, using pulsed excitation laser sources operating at wavelengths of 375 nm and 435 nm. A paired analysis of normal and neoplastic (adenomatous polyp) tissue specimens obtained from the same patient yielded a significant difference in the mean spectrally averaged autofluorescence lifetime −570 ± 740 ps (p = 0.021, n = 12). We also investigated the fluorescence signature of non-neoplastic polyps (n = 6) and inflammatory bowel disease (n = 4) compared to normal tissue in a small number of specimens
On the Meaning of Shenme \u27what\u27 in Chinese Bare Conditionals and its Implications for Carlson\u27s Semantics of Bare Plurals
Numerical study of linear and circular model DNA chains confined in a slit: metric and topological properties
Advanced Monte Carlo simulations are used to study the effect of nano-slit
confinement on metric and topological properties of model DNA chains. We
consider both linear and circularised chains with contour lengths in the
1.2--4.8 m range and slits widths spanning continuously the 50--1250nm
range. The metric scaling predicted by de Gennes' blob model is shown to hold
for both linear and circularised DNA up to the strongest levels of confinement.
More notably, the topological properties of the circularised DNA molecules have
two major differences compared to three-dimensional confinement. First, the
overall knotting probability is non-monotonic for increasing confinement and
can be largely enhanced or suppressed compared to the bulk case by simply
varying the slit width. Secondly, the knot population consists of knots that
are far simpler than for three-dimensional confinement. The results suggest
that nano-slits could be used in nano-fluidic setups to produce DNA rings
having simple topologies (including the unknot) or to separate heterogeneous
ensembles of DNA rings by knot type.Comment: 12 pages, 10 figure
Depth resolved lattice-charge coupling in epitaxial BiFeO3 thin film
For epitaxial films, a critical thickness (t(c)) can create a phenomenological interface between a strained bottom layer and a relaxed top layer. Here, we present an experimental report of how the t(c) in BiFeO3 thin films acts as a boundary to determine the crystalline phase, ferroelectricity, and piezoelectricity in 60 nm thick BiFeO3/SrRuO3/SrTiO3 substrate. We found larger Fe cation displacement of the relaxed layer than that of strained layer. In the time-resolved X-ray microdiffraction analyses, the piezoelectric response of the BiFeO3 film was resolved into a strained layer with an extremely low piezoelectric coefficient of 2.4 pm/V and a relaxed layer with a piezoelectric coefficient of 32 pm/V. The difference in the Fe displacements between the strained and relaxed layers is in good agreement with the differences in the piezoelectric coefficient due to the electromechanical couplingope
Relativistic quantum effects of Dirac particles simulated by ultracold atoms
Quantum simulation is a powerful tool to study a variety of problems in
physics, ranging from high-energy physics to condensed-matter physics. In this
article, we review the recent theoretical and experimental progress in quantum
simulation of Dirac equation with tunable parameters by using ultracold neutral
atoms trapped in optical lattices or subject to light-induced synthetic gauge
fields. The effective theories for the quasiparticles become relativistic under
certain conditions in these systems, making them ideal platforms for studying
the exotic relativistic effects. We focus on the realization of one, two, and
three dimensional Dirac equations as well as the detection of some relativistic
effects, including particularly the well-known Zitterbewegung effect and Klein
tunneling. The realization of quantum anomalous Hall effects is also briefly
discussed.Comment: 22 pages, review article in Frontiers of Physics: Proceedings on
Quantum Dynamics of Ultracold Atom
- …
