219 research outputs found
Dietary L-arginine supplementation reduces fat mass in diet-induced obese rats
This study was conducted to test the hypothesis that dietary arginine supplementation
reduces fat mass in diet-induced obese rats. Male Sprague-Dawley rats were fed either
low- or high-fat diets for 15 wks (16 rats/diet). Thereafter, lean or obese rats continued
to be fed their same respective diets and received drinking water containing either 1.51%
L-arginine-HCl or 2.55% alanine (isonitrogenous control) (n=8/treatment group).
Twelve weeks after the initiation of the arginine treatment, rats were euthanized to
obtain tissues for biochemical analyses. Results were statistically analyzed as a 2x2
factorial experimental design using ANOVA. High-fat diet increased the mass of white
adipose tissues at different anatomical locations by 49-96% compared to the low-fat diet.
Concentrations of serum cholesterol as well as lipids in skeletal muscle and liver were
higher in obese rats than in lean rats. L-Arginine supplementation reduced white adipose
tissue mass by 20-40% while increasing brown adipose tissue mass by 15-20%. In
addition, arginine treatment decreased adipocyte size, serum concentrations of glucose,
triglycerides and leptin, improved glucose tolerance, and enhanced glucose and oleic acid oxidation in skeletal muscles. The mRNA levels for hepatic fatty acid synthase and
stearoyl-CoA desaturase were reduced, but mRNA levels for hepatic AMP-activated
protein kinase (AMPK), PPAR coactivator-1 and carnitine palmitoyltransferase I
(CPT-I) as well as muscle CPT-I were increased in response to the arginine treatment.
Subsequent experiments were conducted with cell models to define the direct effects of
arginine on energy-substrate metabolism in insulin-sensitive cells. In BNL CL.2 mouse
hepatocytes, C2C12 mouse myotubes and 3T3-L1 mouse adipocytes, increasing
extracellular concentrations of arginine from 0 to 400 µM increased AMPK expression
as well as glucose and oleic acid oxidation. Inhibition of nitric oxide synthesis
moderately attenuated the arginine-stimulated increases of substrate oxidation as well as
AMPK and ACC phosphorylation in BNL CL.2 cells, but had no effect in C2C12 and
3T3-L1 cells. Collectively, these results suggest that arginine increases AMPK
expression and energy-substrate oxidation in a cell-specific manner, thereby reducing fat
mass in diet-induced obese rats. The findings have important implications for treating
obesity in humans and companion animals as well as decreasing fat deposition in
livestock species
HYPHENATED AMERICANS: CHRISTIAN ARAB-AMERICANS’ IDENTITY STRUGGLE
The topic of this thesis is the understudied minority of Christian Arab-Americans (CAAs), and this research addresses the issues CAAs face in the United States with special attention to the factors that influence their cultural identity. The thesis provides a historical background on how Christian Arabs came to the United States and explains the factors that influence their identity struggle. The theoretical framework of my research is based on Berry’s (1997) acculturation model. Ten participants were interviewed for this study, and a thematic analysis was conducted in order to determine the extent to which religiosity and perceived discrimination affects/influences the participants’ acculturation mode. The findings can bring cultural awareness to society, and the research provides future researchers with a direction for studying the Christian Arab-American population
l-Arginine stimulates proliferation and prevents endotoxin-induced death of intestinal cells
This study tested the hypothesis that l-arginine (Arg) may stimulate cell proliferation and prevent lipopolysaccharide (LPS)-induced death of intestinal cells. Intestinal porcine epithelial cells (IPEC-1) were cultured for 4 days in Arg-free Dulbecco’s modified Eagle’s-F12 Ham medium (DMEM-F12) containing 10, 100 or 350 μM Arg and 0 or 20 ng/ml LPS. Cell numbers, protein concentrations, protein synthesis and degradation, as well as mammalian target of rapamycin (mTOR) and Toll-like receptor 4 (TLR4) signaling pathways were determined. Without LPS, IPEC-1 cells exhibited time- and Arg-dependent growth curves. LPS treatment increased cell death and reduced protein concentrations in IPEC-1 cells. Addition of 100 and 350 μM Arg to culture medium dose-dependently attenuated LPS-induced cell death and reduction of protein concentrations, in comparison with the basal medium containing 10 μM Arg. Furthermore, supplementation of 100 and 350 μM Arg increased protein synthesis and reduced protein degradation in both control and LPS-treated IPEC-1 cells. Consistent with the data on cell growth and protein turnover, addition of 100 or 350 μM Arg to culture medium increased relative protein levels for phosphorylated mTOR and phosphorylated ribosomal protein S6 kinase-1, while reducing the relative levels of TLR4 and phosphorylated levels of nuclear factor-κB in LPS-treated IPEC-1 cells. These results demonstrate a protective effect of Arg against LPS-induced enterocyte damage through mechanisms involving mTOR and TLR4 signaling pathways, as well as intracellular protein turnover
Determination of nitric oxide metabolites, nitrate and nitrite, in Anopheles culicifacies mosquito midgut and haemolymph by anion exchange high-performance liquid chromatography: plausible mechanism of refractoriness
<p>Abstract</p> <p>Background</p> <p>The diverse physiological and pathological role of nitric oxide in innate immune defenses against many intra and extracellular pathogens, have led to the development of various methods for determining nitric oxide (NO) synthesis. NO metabolites, nitrite (NO<sub>2</sub><sup>-</sup>) and nitrate (NO<sub>3</sub><sup>-</sup>) are produced by the action of an inducible <it>Anopheles culicifacies </it>NO synthase (AcNOS) in mosquito mid-guts and may be central to anti-parasitic arsenal of these mosquitoes.</p> <p>Method</p> <p>While exploring a plausible mechanism of refractoriness based on nitric oxide synthase physiology among the sibling species of <it>An. culicifacies</it>, a sensitive, specific and cost effective high performance liquid chromatography (HPLC) method was developed, which is not influenced by the presence of biogenic amines, for the determination of NO<sub>2</sub><sup>- </sup>and NO<sub>3</sub><sup>- </sup>from mosquito mid-guts and haemolymph.</p> <p>Results</p> <p>This method is based on extraction, efficiency, assay reproducibility and contaminant minimization. It entails de-proteinization by centrifugal ultra filtration through ultracel 3 K filter and analysis by high performance anion exchange liquid chromatography (Sphereclone, 5 μ SAX column) with UV detection at 214 nm. The lower detection limit of the assay procedure is 50 pmoles in all midgut and haemolymph samples. Retention times for NO<sub>2</sub><sup>- </sup>and NO<sub>3</sub><sup>- </sup>in standards and in mid-gut samples were 3.42 and 4.53 min. respectively. Assay linearity for standards ranged between 50 n<it>M </it>and 1 m<it>M</it>. Recoveries of NO<sub>2</sub><sup>- </sup>and NO<sub>3</sub><sup>- </sup>from spiked samples (1–100 μ<it>M</it>) and from the extracted standards (1–100 μ<it>M</it>) were calculated to be 100%. Intra-assay and inter assay variations and relative standard deviations (RSDs) for NO<sub>2</sub><sup>- </sup>and NO<sub>3</sub><sup>- </sup>in spiked and un-spiked midgut samples were 5.7% or less. Increased levels NO<sub>2</sub><sup>- </sup>and NO<sub>3</sub><sup>- </sup>in midguts and haemolymph of <it>An. culicifacies </it>sibling species B in comparison to species A reflect towards a mechanism of refractoriness based on AcNOS physiology.</p> <p>Conclusion</p> <p>HPLC is a sensitive and accurate technique for identification and quantifying pmole levels of NO metabolites in mosquito midguts and haemolymph samples that can be useful for clinical investigations of NO biochemistry, physiology and pharmacology in various biological samples.</p
eNOS genotype modifies the effect of leisure-time physical activity on serum triglyceride levels in a Japanese population
Stable isotope analysis of dietary arginine accrual and disposal efficiency in male rats fed diets with different protein content
Determination of Nitric Oxide-Derived Nitrite and Nitrate in Biological Samples by HPLC Coupled to Nitrite Oxidation
Quantitative and Comparative Contents of Nitrate and Nitrite in Beta vulgaris L. by Reversed-Phase High-Performance Liquid Chromatography-Fluorescence
Dietary arginine supplementation reduces fat mass in diet‐induced‐obese rats by improving glucose and fatty acid metabolism
- …
