60 research outputs found
Determining optimal cadence for an individual road cyclist from field data
The cadence that maximises power output developed at the crank by an individual cyclist is conventionally determined using a laboratory test. The purpose of this study was two-fold: (i) to show that such a cadence, which we call the optimal cadence, can be determined using power output, heart-rate, and cadence measured in the field and (ii) to describe methodology to do so. For an individual cyclist's sessions, power output is related to cadence and the elicited heart-rate using a non-linear regression model. Optimal cadences are found for two riders (83 and 70 revolutions per minute, respectively); these cadences are similar to the riders’ preferred cadences (82–92?rpm and 65–75?rpm). Power output reduces by approximately 6% for cadences 20?rpm above or below optimum. Our methodology can be used by a rider to determine an optimal cadence without laboratory testing intervention: the rider will need to collect power output, heart-rate, and cadence measurements from training and racing sessions over an extended period (>6 months); ride at a range of cadences within those sessions; and calculate his/her optimal cadence using the methodology described or a software tool that implements it
Recommended from our members
Trace gas mixing ratio variability versus lifetime in the troposphere and stratosphere: Observations
Several archived data sets have been reviewed to examine the relationship between mixing ratio variability and lifetime for hydrocarbon and halocarbon species in the troposphere and stratosphere. The dependence on lifetime was described by the power law relationship slnX = Aτ-b, where slnX is the standard deviation of the In of the mixing ratios, A is a proportionality coefficient, and b is an exponent that relates to the dominance of sink terms in the regional variability budget. At the Harvard forest ground site, winter and summer data displayed the same lifetime dependence, τ-0.18, which was significantly weaker than the τ-0.5 dependence of remote tropospheric data, indicating that source terms dominated regional variability at Harvard. In addition, the ratio of summer to winter slnX values was found to be similar for all species except ethane, averaging 1.54 ± 0.04. This ratio is consistent with a factor of 11 seasonal change in the species lifetimes, given a τ-0.18 lifetime dependence. Stratospheric data displayed a stronger lifetime dependence than tropospheric trends, indicating a more dominant role for sink terms in describing spatial variability in this region of the atmosphere. We show that a unique power law relationship between slnX ratios for two species Xi and Xj and the kinetic slope of ln(Xi) versus ln(Xj) correlation plots is found to hold in both observations and theory. Thus knowledge of the coefficient b allows for a clearer understanding of the relationship between observed slopes of ln(Xi) versus ln(Xj) correlation plots and the ratio of the species lifetimes. Copyright 1999 by the American Geophysical Union
International diversification with securitized real estate and the veiling glare from currency risk
This paper analyzes diversification benefits from international securitized real estate in a mixed-asset context. We apply regression-based mean-variance efficiency tests, conditional on currency-unhedged and fully hedged portfolios to account for foreign exchange risk exposure. From the perspective of a US investor, it is shown that first, international diversification is superior to a US mixed-asset portfolio, second, adding international real estate to an already internationally diversified stock and bond portfolio results in a further significant improvement of the risk-return trade-off and, third, considering unhedged international assets could lead to biased asset allocation decisions not realizing the true diversification benefits from international assets. Our in-sample results are quite robust in out-of-sample analysis and when investment frictions like short selling constraints are introduced
Female germ unit in Genlisea and Utricularia, with remarks about the evolution of the extra-ovular female gametophyte in members of Lentibulariaceae
Lentibulariaceae is the largest family among carnivorous plants which displays not only an unusual morphology and anatomy but also the special evolution of its embryological characteristics. It has previously been reported by authors that Utricularia species lack a filiform apparatus in the synergids. The main purposes of this study were to determine whether a filiform apparatus occurs in the synergids of Utricularia and its sister genus Genlisea, and to compare the female germ unit in these genera. The present studies clearly show that synergids in both genera possess a filiform apparatus; however, it seems that Utricularia quelchii synergids have a simpler structure compared to Genlisea aurea and other typical angiosperms. The synergids are located at the terminal position in the embryo sacs of Pinguicula, Genlisea and were probably also located in that position in common Utricularia ancestor. This ancestral characteristic still occurs in some species from the Bivalvaria subgenus. An embryo sac, which grows out beyond the limit of the integument and has contact with nutritive tissue, appeared independently in different Utricularia lineages and as a consequence of this, the egg apparatus changes position from apical to lateral
Determination of genetic structure of germplasm collections: are traditional hierarchical clustering methods appropriate for molecular marker data?
Despite the availability of newer approaches, traditional hierarchical clustering remains very popular in genetic diversity studies in plants. However, little is known about its suitability for molecular marker data. We studied the performance of traditional hierarchical clustering techniques using real and simulated molecular marker data. Our study also compared the performance of traditional hierarchical clustering with model-based clustering (STRUCTURE). We showed that the cophenetic correlation coefficient is directly related to subgroup differentiation and can thus be used as an indicator of the presence of genetically distinct subgroups in germplasm collections. Whereas UPGMA performed well in preserving distances between accessions, Ward excelled in recovering groups. Our results also showed a close similarity between clusters obtained by Ward and by STRUCTURE. Traditional cluster analysis can provide an easy and effective way of determining structure in germplasm collections using molecular marker data, and, the output can be used for sampling core collections or for association studies
Treatment of bipolar disorder: a complex treatment for a multi-faceted disorder
Background: Manic-depression or bipolar disorder (BD) is a multi-faceted illness with an inevitably complex treatment. Methods: This article summarizes the current status of our knowledge and practice of its treatment. Results: It is widely accepted that lithium is moderately useful during all phases of bipolar illness and it might possess a specific effectiveness on suicidal prevention. Both first and second generation antipsychotics are widely used and the FDA has approved olanzapine, risperidone, quetiapine, ziprasidone and aripiprazole for the treatment of acute mania. These could also be useful in the treatment of bipolar depression, but only limited data exists so far to support the use of quetiapine monotherapy or the olanzapine-fluoxetine combination. Some, but not all, anticonvulsants possess a broad spectrum of effectiveness, including mixed dysphoric and rapid-cycling forms. Lamotrigine may be effective in the treatment of depression but not mania. Antidepressant use is controversial. Guidelines suggest their cautious use in combination with an antimanic agent, because they are supposed to induce switching to mania or hypomania, mixed episodes and rapid cycling. Conclusion: The first-line psychosocial intervention in BD is psychoeducation, followed by cognitive-behavioral therapy. Other treatment options include Electroconvulsive therapy and transcranial magnetic stimulation. There is a gap between the evidence base, which comes mostly from monotherapy trials, and clinical practice, where complex treatment regimens are the rule
Scaling maximal oxygen uptake to predict cycling time-trial performance in the field: a non-linear approach.
The purpose of the present article is to identify the most appropriate method of scaling VO2max for differences in body mass when assessing the energy cost of time-trial cycling. The data from three time-trial cycling studies were analysed (N = 79) using a proportional power-function ANCOVA model. The maximum oxygen uptake-to-mass ratio found to predict cycling speed was VO2max(m)(-0.32) precisely the same as that derived by Swain for sub-maximal cycling speeds (10, 15 and 20 mph). The analysis was also able to confirm a proportional curvilinear association between cycling speed and energy cost, given by (VO2max(m)(-0.32))0.41. The model predicts, for example, that for a male cyclist (72 kg) to increase his average speed from 30 km h(-1) to 35 km h(-1), he would require an increase in VO2max from 2.36 l min(-1) to 3.44 l min(-1), an increase of 1.08 l min(-1). In contrast, for the cyclist to increase his mean speed from 40 km h(-1) to 45 km h(-1), he would require a greater increase in VO2max from 4.77 l min(-1) to 6.36 l min(-1), i.e. an increase of 1.59 l min(-1). The model is also able to accommodate other determinants of time-trial cycling, e.g. the benefit of cycling with a side wind (5% faster) compared with facing a predominately head/tail wind (P<0.05). Future research could explore whether the same scaling approach could be applied to, for example, alternative measures of recording power output to improve the prediction of time-trial cycling performance
Controversies in the physiological basis of the 'anaerobic threshold' and their implications for clinical cardiopulmonary exercise testing.
This article reviews the notion of the 'anaerobic threshold' in the context of cardiopulmonary exercise testing. Primarily, this is a review of the proposed mechanisms underlying the ventilatory and lactate response to incremental exercise, which is important to the clinical interpretation of an exercise test. Since such tests are often conducted for risk stratification before major surgery, a failure to locate or justify the existence of an anaerobic threshold will have some implications for clinical practice. We also consider alternative endpoints within the exercise response that might be better used to indicate a patient's capacity to cope with the metabolic demands encountered both during and following major surgery
- …
