29 research outputs found

    A randomized, double-blind, placebo-controlled trial to assess the efficacy of topiramate in the treatment of post-traumatic stress disorder

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Topiramate might be effective in the treatment of posttraumatic stress disorder (PTSD) because of its antikindling effect and its action in both inhibitory and excitatory neurotransmitters. Open-label studies and few controlled trials have suggested that this anticonvulsant may have therapeutic potential in PTSD. This 12-week randomized, double-blind, placebo-controlled clinical trial will compare the efficacy of topiramate with placebo and study the tolerability of topiramate in the treatment of PTSD.</p> <p>Methods and design</p> <p>Seventy-two adult outpatients with DSM-IV-diagnosed PTSD will be recruited from the violence program of Federal University of São Paulo Hospital (UNIFESP). After informed consent, screening, and a one week period of wash out, subjects will be randomized to either placebo or topiramate for 12 weeks. The primary efficacy endpoint will be the change in the Clinician-administered PTSD scale (CAPS) total score from baseline to the final visit at 12 weeks.</p> <p>Discussion</p> <p>The development of treatments for PTSD is challenging due to the complexity of the symptoms and psychiatric comorbidities. The selective serotonin reuptake inhibitors (SSRIs) are the mainstream treatment for PTSD, but many patients do not have a satisfactory response to antidepressants. Although there are limited clinical studies available to assess the efficacy of topiramate for PTSD, the findings of prior trials suggest this anticonvulsant may be promising in the management of these patients.</p> <p>Trial Registration</p> <p>NCT 00725920</p

    Problems of multi-species organisms: endosymbionts to holobionts

    Get PDF
    The organism is one of the fundamental concepts of biology and has been at the center of many discussions about biological individuality, yet what exactly it is can be confusing. The definition that we find generally useful is that an organism is a unit in which all the subunits have evolved to be highly cooperative, with very little conflict. We focus on how often organisms evolve from two or more formerly independent organisms. Two canonical transitions of this type—replicators clustered in cells and endosymbiotic organelles within host cells—demonstrate the reality of this kind of evolutionary transition and suggest conditions that can favor it. These conditions include co-transmission of the partners across generations and rules that strongly regulate and limit conflict, such as a fair meiosis. Recently, much attention has been given to associations of animals with microbes involved in their nutrition. These range from tight endosymbiotic associations like those between aphids and Buchnera bacteria, to the complex communities in animal intestines. Here, starting with a reflection about identity through time (which we call “Theseus’s fish”), we consider the distinctions between these kinds of animal–bacteria interactions and describe the criteria by which a few can be considered jointly organismal but most cannot

    A Gene-Environment Study of Cytoglobin in the Human and Rat Hippocampus

    Get PDF
    BACKGROUND: Cytoglobin (Cygb) was discovered a decade ago as the fourth vertebrate heme-globin. The function of Cygb is still unknown, but accumulating evidence from in vitro studies point to a putative role in scavenging of reactive oxygen species and nitric oxide metabolism and in vivo studies have shown Cygb to be up regulated by hypoxic stress. This study addresses three main questions related to Cygb expression in the hippocampus: 1) Is the rat hippocampus a valid neuroanatomical model for the human hippocampus; 2) What is the degree of co-expression of Cygb and neuronal nitric oxide synthase (nNOS) in the rat hippocampus; 3) The effect of chronic restraint stress (CRS) on Cygb and nNOS expression. METHODS: Immunohistochemistry was used to compare Cygb expression in the human and rat hippocampi as well as Cygb and nNOS co-expression in the rat hippocampus. Transcription and translation of Cygb and nNOS were investigated using quantitative real-time polymerase chain reaction (real-time qPCR) and Western blotting on hippocampi from Flinders (FSL/FRL) rats exposed to CRS. PRINCIPAL FINDINGS: Cygb expression pattern in the human and rat hippocampus was found to be similar. A high degree of Cygb and nNOS co-expression was observed in the rat hippocampus. The protein levels of nNOS and Cygb were significantly up-regulated in FSL animals in the dorsal hippocampus. In the ventral hippocampus Cygb protein levels were significantly up-regulated in the FSL compared to the FRL, following CRS. SIGNIFICANCE: The rodent hippocampus can be used to probe questions related to Cygb protein localization in human hippocampus. The high degree of Cygb and nNOS co-expression gives support for Cygb involvement in nitric oxide metabolism. CRS induced Cygb and nNOS expression indicating that Cygb expression is stress responsive. Cygb and nNOS may be important in physiological response to stress

    Neuronal Nitric Oxide Synthase (NOS1) Polymorphisms Interact with Financial Hardship to Affect Depression Risk.

    No full text
    There is increasing evidence that genetic factors have a role in differential susceptibility to depression in response to severe or chronic adversity. Studies in animals suggest that nitric oxide (NO) signalling has a key role in depression-like behavioural responses to stress. This study investigated whether genetic variation in the brain-expressed nitric oxide synthase gene NOS1 modifies the relationship between psychosocial stress and current depression score. We recruited a population sample of 1222 individuals who provided DNA and questionnaire data on symptoms and stress. Scores on the List of Life-Threatening Experiences (LTE) questionnaire for the last year and self-rated current financial hardship were used as measures of recent/ongoing psychosocial stress. Twenty SNPs were genotyped. Significant associations between eight NOS1 SNPs, comprising two regional haplotypes, and current depression score were identified that survived correction for multiple testing when current financial hardship was used as the interaction term. A smaller three-SNP haplotypes (rs10507279, rs1004356 and rs3782218) located in a regulatory region of NOS1 showed one of the strongest effects, with the A-C-T haplotype associating with higher depression scores at low adversity levels but lower depression scores at higher adversity levels (p=2.3E-05). These results suggest that NOS1 SNPs interact with exposure to economic and psychosocial stressors to alter individual's susceptibility to depression.Neuropsychopharmacology advance online publication, 16 July 2014; doi:10.1038/npp.2014.137

    Predator Exposure/Psychosocial Stress Animal Model of Post-Traumatic Stress Disorder Modulates Neurotransmitters in the Rat Hippocampus and Prefrontal Cortex

    Get PDF
    Post-Traumatic Stress Disorder (PTSD) can develop in response to a traumatic event involving a threat to life. To date, no diagnostic biomarkers have been identified for PTSD. Recent research points toward physiological abnormalities in the hypothalamic-pituitary-adrenal (HPA) axis, sympathoadrenal medullary and immune system that may be implicated in the disorder. The modulation of neurotransmitters is another possible mechanism, but their role in the progression of PTSD is poorly understood. Low serotonin (5-HT) may be a factor, but it may not be the only neurotransmitter affected as modulation affects levels of other neurotransmitters. In this study, we hypothesized the predator exposure/psychosocial stress rodent model of PTSD may alter levels of 5-HT and other neurotransmitters in the rat hippocampus and prefrontal cortex (PFC). Male Sprague-Dawley rats were used in this experiment. We induced PTSD via a predator exposure/psychosocial stress model, whereby rats were placed in a cage with a cat for 1 hour on days 1 and 11 of the 31-day experiment. Rats also received psychosocial stress via daily cage cohort changes. On day 32, the rats were sacrificed and the brains dissected to remove the hippocampus and PFC. Norepinephrine (NE), 5-Hydroxyindoleacetic acid (5-HIAA), homovanillic acid (HVA), dopamine (DA), and 3,4-Dihydroxyphenylacetic acid (DOPAC), and 5-HT levels in the hippocampus and PFC were measured with high-performance liquid chromatography (HPLC). In the hippocampus, 5-HT and HVA were lower, while NE and DOPAC were higher, in the PTSD group vs. controls. In the PFC, only 5-HT was lower, while NE, DA, and DOPAC were higher, in the PTSD group vs. controls. The rate limiting enzymes tyrosine hydroxylase and tryptophan hydroxylase were also examined and confirmed our findings. These results demonstrate that the predator exposure/psychosocial stress model of PTSD produces neurotransmitter changes similar to those seen in human patients and may cause a heightened noradrenergic response
    corecore