46 research outputs found

    Whole-Exome Sequencing in the Differential Diagnosis of Primary Adrenal Insufficiency in Children.

    Get PDF
    Adrenal insufficiency is a rare, but potentially fatal medical condition. In children, the cause is most commonly congenital and in recent years a growing number of causative gene mutations have been identified resulting in a myriad of syndromes that share adrenal insufficiency as one of the main characteristics. The evolution of adrenal insufficiency is dependent on the variant and the particular gene affected, meaning that rapid and accurate diagnosis is imperative for effective treatment of the patient. Common practice is for candidate genes to be sequenced individually, which is a time-consuming process and complicated by overlapping clinical phenotypes. However, with the availability, and increasing cost effectiveness of whole-exome sequencing, there is the potential for this to become a powerful diagnostic tool. Here, we report the results of whole-exome sequencing of 43 patients referred to us with a diagnosis of familial glucocorticoid deficiency (FGD) who were mutation negative for MC2R, MRAP, and STAR the most commonly mutated genes in FGD. WES provided a rapid genetic diagnosis in 17/43 sequenced patients, for the remaining 60% the gene defect may be within intronic/regulatory regions not covered by WES or may be in gene(s) representing novel etiologies. The diagnosis of isolated or familial glucocorticoid deficiency was only confirmed in 3 of the 17 patients, other genetic diagnoses were adrenal hypo- and hyperplasia, Triple A, and autoimmune polyendocrinopathy syndrome type I, emphasizing both the difficulty of phenotypically distinguishing between disorders of PAI and the utility of WES as a tool to achieve this

    A new sesquiterpene lactone sulfate from Reichardia gaditana (Asteraceae).

    No full text
    The new sesquiterpenoid 8-deoxy-15-(3'-hydroxy-2'-methyl-propanoyl)-lactucin 3'-sulfate (1) was isolated from the methanolic extract of roots of Reichardia gaditana L. The compound was isolated by silica gel column chromatography (CC) and repeated Sephadex LH-20 CC. Structure elucidation was accomplished by high-resolution mass spectrometry and by 1D- and 2D-NMR spectroscopy. The chemosystematic significance of the new compound is discussed in the context of sesquiterpenoids from other members of the Lactuceae tribe of the Asteraceae family

    Characterization of the molecular genetic pathology in patients with 11β-hydroxylase deficiency

    No full text
    WOS: 000363267400006PubMed: 26053152ObjectiveSteroid 11-hydroxylase (CYP11B1) deficiency (11OHD) is the second most common form of congenital adrenal hyperplasia. Nonclassic or mild 11OHD appears to be a rare condition. Our study assessed the residual CYP11B1 function of detected mutations, adding to the spectrum of mild 11OHD, and illustrates the variability of the clinical presentation of 11OHD. Patients and methodsFive patients presented with mild to moderate 11OHD. Two women presented with mild hirsutism and in one case with secondary amenorrhoea. Two men presented with precocious pseudopuberty, gynaecomastia and elevated blood pressure. One 46,XX female patient was diagnosed with virilization of the external genitalia 2years after birth. Direct DNA sequencing was carried out to perform CYP11B1 mutation analysis. The CYP11B1 mutations were functionally characterized using an invitro expression system. ResultsCYP11B1-inactivating mutations were detected in all patients. Two novel missense mutations (p.P42L and p.A297V) and the previously characterized p.R143W mutation had residual CYP11B1 activities between 10% and 27%. A novel p.L382R and the previously uncharacterized p.G444D mutation both caused complete loss of CYP11B1 enzymatic activity. ConclusionMutations causing partial impairment of 11-hydroxylase activity (residual activity of 10% or above) are associated with a less severe clinical presentation of 11OHD, which can be classified as a nonclassic form. Our data demonstrate that patients with nonclassic 11OHD can present with androgen excess, precocious pseudopuberty and increased blood pressure. Timely diagnosis of nonclassic 11OHD and consequently initiation of personalized treatment is essential to prevent co-morbidities caused by androgen excess and hypertension.ZonMW AGIKO Grant; European CommissionEuropean Commission Joint Research Centre [IEF-GA-2009-255424]; Medical Research CouncilMedical Research Council UK (MRC) [G0900567]This work was supported by the ZonMW AGIKO Grant (to C.F.M.), the European Commission (Marie Curie Intra-European Fellowship IEF-GA-2009-255424 to S.P.)
    corecore