65 research outputs found

    Quark Asymmetries in Nucleons

    Full text link
    We have developed a physical model for the non-perturbative x-shape of parton density functions in the proton, based on Gaussian fluctuations in momenta, and quantum fluctuations of the proton into meson-baryon pairs. The model describes the proton structure function and gives a natural explanation of observed quark asymmetries, such as the difference between the anti-up and anti-down sea quark distributions and between the up and down valence distributions. We also find an asymmetry in the momentum distribution of strange and anti-strange quarks in the nucleon, large enough to reduce the NuTeV anomaly to a level which does not give a significant indication of physics beyond the standard model.Comment: 4 pages, 5 figures. Talk given at DIS 2005, Madison, USA, April 27-May 1, 200

    Measuring Sparticles with the Matrix Element

    Full text link
    We apply the Matrix Element Method (MEM) to mass determination of squark pair production with direct decay to quarks and LSP at the LHC, showing that simultaneous mass determination of squarks and LSP is possible. We furthermore propose methods for inclusion of QCD radiation effects in the MEM.Comment: 4 pages, 2 figures. To appear in the proceedings of SUSY09, the 17th International Conference on Supersymmetry and the Unification of Fundamental Interactions. Figures replaced (corrected y axis labels

    Simplified Models for a First Characterization of New Physics at the LHC

    Full text link
    Low-energy SUSY and several other theories that address the hierarchy problem predict pair-production at the LHC of particles with Standard Model quantum numbers that decay to jets, missing energy, and possibly leptons. If an excess of such events is seen in LHC data, a theoretical framework in which to describe it will be essential to constraining the structure of the new physics. We propose a basis of four deliberately simplified models, each specified by only 2-3 masses and 4-5 branching ratios, for use in a first characterization of data. Fits of these simplified models to the data furnish a quantitative presentation of the jet structure, electroweak decays, and heavy-flavor content of the data, independent of detector effects. These fits, together with plots comparing their predictions to distributions in data, can be used as targets for describing the data within any full theoretical model.Comment: 76 pages, 24 figures, 9 table

    Model-Independent Jets plus Missing Energy Searches

    Get PDF
    We present a proposal for performing model-independent jets plus missing energy searches. Currently, these searches are optimized for mSUGRA and are consequently not sensitive to all kinematically-accessible regions of parameter space. We show that the reach of these searches can be broadened by setting limits on the differential cross section as a function of the total visible energy and the missing energy. These measurements only require knowledge of the relevant Standard Model backgrounds and can be subsequently used to limit any theoretical model of new physics. We apply this approach to an example where gluinos are pair-produced and decay to the LSP through a single-step cascade, and show how sensitivity to different gluino masses is altered by the presence of the decay chain. The analysis is closely based upon the current searches done at the Tevatron and our proposal requires only small modifications to the existing techniques. We find that within the MSSM, the gluino can be as light as 125 GeV. The same techniques are applicable to jets and missing energy searches at the Large Hadron Collider.Comment: 22 pages, 6 figures, 3 tables, typos correcte
    corecore