1,539 research outputs found
Woven Graph Codes: Asymptotic Performances and Examples
Constructions of woven graph codes based on constituent block and
convolutional codes are studied. It is shown that within the random ensemble of
such codes based on -partite, -uniform hypergraphs, where depends
only on the code rate, there exist codes satisfying the Varshamov-Gilbert (VG)
and the Costello lower bound on the minimum distance and the free distance,
respectively. A connection between regular bipartite graphs and tailbiting
codes is shown. Some examples of woven graph codes are presented. Among them an
example of a rate woven graph code with
based on Heawood's bipartite graph and containing constituent rate
convolutional codes with overall constraint lengths is
given. An encoding procedure for woven graph codes with complexity proportional
to the number of constituent codes and their overall constraint length
is presented.Comment: Submitted to IEEE Trans. Inform. Theor
Systems approaches and algorithms for discovery of combinatorial therapies
Effective therapy of complex diseases requires control of highly non-linear
complex networks that remain incompletely characterized. In particular, drug
intervention can be seen as control of signaling in cellular networks.
Identification of control parameters presents an extreme challenge due to the
combinatorial explosion of control possibilities in combination therapy and to
the incomplete knowledge of the systems biology of cells. In this review paper
we describe the main current and proposed approaches to the design of
combinatorial therapies, including the empirical methods used now by clinicians
and alternative approaches suggested recently by several authors. New
approaches for designing combinations arising from systems biology are
described. We discuss in special detail the design of algorithms that identify
optimal control parameters in cellular networks based on a quantitative
characterization of control landscapes, maximizing utilization of incomplete
knowledge of the state and structure of intracellular networks. The use of new
technology for high-throughput measurements is key to these new approaches to
combination therapy and essential for the characterization of control
landscapes and implementation of the algorithms. Combinatorial optimization in
medical therapy is also compared with the combinatorial optimization of
engineering and materials science and similarities and differences are
delineated.Comment: 25 page
The Fine-Structure of the Net-Circular Polarization in a Sunspot Penumbra
We present novel evidence for a fine structure observed in the net-circular
polarization (NCP) of a sunspot penumbra based on spectropolarimetric
measurements utilizing the Zeeman sensitive FeI 630.2 nm line. For the first
time we detect a filamentary organized fine structure of the NCP on spatial
scales that are similar to the inhomogeneities found in the penumbral flow
field. We also observe an additional property of the visible NCP, a
zero-crossing of the NCP in the outer parts of the center-side penumbra, which
has not been recognized before. In order to interprete the observations we
solve the radiative transfer equations for polarized light in a model penumbra
with embedded magnetic flux tubes. We demonstrate that the observed
zero-crossing of the NCP can be explained by an increased magnetic field
strength inside magnetic flux tubes in the outer penumbra combined with a
decreased magnetic field strength in the background field. Our results strongly
support the concept of the uncombed penumbra
Iodine status of adolescent girls in a population changing from high to lower fish consumption
To access publisher full text version of this article. Please click on the hyperlink in Additional Links fieldObjectives:During the last decades, fish and milk consumption has decreased considerably in Iceland, especially among adolescents. As these food items are important dietary iodine (I) sources, the aim of the study was to assess the iodine status and dietary pattern of adolescent girls in a population changing from a high to lower consumption of milk and fish.Subjects/Methods:Subjects were randomly selected adolescent girls (16-20 years old, n=112). A validated Food Frequency Questionnaire (FFQ) was used to evaluate food consumption and compare it with food-based dietary guidelines for milk and dairy products (2-3 portions/day) and fish (>/=2 times/week). Urine samples were collected for measuring urinary iodine (U-I) and creatinine (Cr) and blood samples for measuring serum thyroid-stimulating hormone (TSH).Results:Milk and dairy products provided 43% and fish provided 24% of the total dietary I. More than 65% of the girls consumed fish less than twice a week, and 40% consumed less than two portions of milk and dairy products per day. The median U-I concentration was 200 mug/l and the U-I/Cr ratio 138 mug I/g Cr. High intake of milk was associated with higher urinary iodine concentration, but fish intake was not found to be directly associated with urinary iodine concentration.Conclusions:Iodine status of Icelandic adolescent girls is within the optimal range defined by the World Health Organization. It is important to monitor both iodine status and the iodine concentration of important sources of iodine, as both dietary habits and composition of food might change with time
Fermi-LAT Observations of High- and Intermediate-Velocity Clouds: Tracing Cosmic Rays in the Halo of the Milky Way
It is widely accepted that cosmic rays (CRs) up to at least PeV energies are
Galactic in origin. Accelerated particles are injected into the interstellar
medium where they propagate to the farthest reaches of the Milky Way, including
a surrounding halo. The composition of CRs coming to the solar system can be
measured directly and has been used to infer the details of CR propagation that
are extrapolated to the whole Galaxy. In contrast, indirect methods, such as
observations of gamma-ray emission from CR interactions with interstellar gas,
have been employed to directly probe the CR densities in distant locations
throughout the Galactic plane. In this article we use 73 months of data from
the Fermi Large Area Telescope in the energy range between 300 MeV and 10 GeV
to search for gamma-ray emission produced by CR interactions in several high-
and intermediate-velocity clouds located at up to ~ 7 kpc above the Galactic
plane. We achieve the first detection of intermediate-velocity clouds in gamma
rays and set upper limits on the emission from the remaining targets, thereby
tracing the distribution of CR nuclei in the halo for the first time. We find
that the gamma-ray emissivity per H atom decreases with increasing distance
from the plane at 97.5% confidence level. This corroborates the notion that CRs
at the relevant energies originate in the Galactic disk. The emissivity of the
upper intermediate-velocity Arch hints at a 50% decline of CR densities within
2 kpc from the plane. We compare our results to predictions of CR propagation
models.Comment: Accepted for publication in the Astrophysical Journa
Enhanced Two-Channel Kondo Physics in a Quantum Box Device
We propose a design for a one-dimensional quantum box device where the charge
fluctuations are described by an anisotropic two-channel Kondo model. The
device consists of a quantum box in the Coulomb blockade regime, weakly coupled
to a quantum wire by a single-mode point contact. The electron correlations in
the wire produce strong back scattering at the contact, significantly
increasing the Kondo temperature as compared to the case of non-interacting
electrons. By employing boundary conformal field theory techniques we show that
the differential capacitance of the box exhibits manifest two-channel Kondo
scaling with temperature and gate voltage, uncontaminated by the
one-dimensional electron correlations. We discuss the prospect to
experimentally access the Kondo regime with this type of device.Comment: EPL style, 5 pages, 1 figure, final published versio
Corrections to scaling in entanglement entropy from boundary perturbations
We investigate the corrections to scaling of the Renyi entropies of a region
of size l at the end of a semi-infinite one-dimensional system described by a
conformal field theory when the corrections come from irrelevant boundary
operators. The corrections from irrelevant bulk operators with scaling
dimension x have been studied by Cardy and Calabrese (2010), and they found not
only the expected corrections of the form l^(4-2x) but also unusual corrections
that could not have been anticipated by finite-size scaling arguments alone.
However, for the case of perturbations from irrelevant boundary operators we
find that the only corrections that can occur to leading order are of the form
l^(2-2x_b) for boundary operators with scaling dimension x_b < 3/2, and l^(-1)
when x_b > 3/2. When x_b=3/2 they are of the form l^(-1)log(l). A marginally
irrelevant boundary perturbation will give leading corrections going as
log(l)^(-3). No unusual corrections occur when perturbing with a boundary
operator.Comment: 8 pages. Minor improvements and updated references. Published versio
Boundary Effects on Spectral Properties of Interacting Electrons in One Dimension
The single electron Green's function of the one-dimensional
Tomonaga-Luttinger model in the presence of open boundaries is calculated with
bosonization methods. We show that the critical exponents of the local spectral
density and of the momentum distribution change in the presence of a boundary.
The well understood universal bulk behavior always crosses over to a boundary
dominated regime for small energies or small momenta. We show this crossover
explicitly for the large-U Hubbard model in the low-temperature limit.
Consequences for photoemission experiments are discussed.Comment: revised and reformatted paper to appear in Phys. Rev. Lett. (Feb.
1996). 5 pages (revtex) and 3 embedded figures (macro included). A complete
postscript file is available from http://FY.CHALMERS.SE/~eggert/luttinger.ps
or by request from [email protected]
- …
