39 research outputs found

    High intensity intermittent games-based activity and adolescents’ cognition: moderating effect of physical fitness

    Get PDF
    Background: An acute bout of exercise elicits a beneficial effect on subsequent cognitive function in adolescents. The effect of games-based activity, an ecologically valid and attractive exercise model for young people, remains unknown; as does the moderating effect of fitness on the acute exercise-cognition relationship. Therefore, the aim of the present study was to examine the effect of games-based activity on subsequent cognition in adolescents, and the moderating effect of fitness on this relationship. Methods: Following ethical approval, 39 adolescents (12.3 ± 0.7 year) completed an exercise and resting trial in a counterbalanced, randomised crossover design. During familiarisation, participants completed a multi-stage fitness test to predict VO2 peak. The exercise trial consisted of 60-min games-based activity (basketball), during which heart rate was 158 ± 11 beats∙min−1. A battery of cognitive function tests (Stroop test, Sternberg paradigm, trail making and d2 tests) were completed 30-min before, immediately following and 45-min following the basketball. Results: Response times on the complex level of the Stroop test were enhanced both immediately (p = 0.021) and 45-min (p = 0.035) post-exercise, and response times on the five item level of the Sternberg paradigm were enhanced immediately post-exercise (p = 0.023). There were no effects on the time taken to complete the trail making test or any outcome of the d2 test. In particular, response times were enhanced in the fitter adolescents 45-min post-exercise on both levels of the Stroop test (simple, p = 0.005; complex, p = 0.040) and on the three item level of the Sternberg paradigm immediately (p = 0.017) and 45-min (p = 0.008) post-exercise. Conclusions: Games-based activity enhanced executive function and working memory scanning speed in adolescents, an effect particularly evident in fitter adolescents, whilst the high intensity intermittent nature of games-based activity may be too demanding for less fit children

    Assembly of Protein Building Blocks Using a Short Synthetic Peptide

    Get PDF
    Combining proteins or their defined domains offers new enhanced functions. Conventionally, two proteins are either fused into a single polypeptide chain by recombinant means or chemically cross-linked. However, these strategies can have drawbacks such as poor expression (recombinant fusions) or aggregation and inactivation (chemical cross-linking), especially in the case of large multifunctional proteins. We developed a new linking method which allows site-oriented, noncovalent, yet irreversible stapling of modified proteins at neutral pH and ambient temperature. This method is based on two distinct polypeptide linkers which self-assemble in the presence of a specific peptide staple allowing on-demand and irreversible combination of protein domains. Here we show that linkers can either be expressed or be chemically conjugated to proteins of interest, depending on the source of the proteins. We also show that the peptide staple can be shortened to 24 amino acids still permitting an irreversible combination of functional proteins. The versatility of this modular technique is demonstrated by stapling a variety of proteins either in solution or to surfaces

    Age, anticoagulants, hypertension and cardiovascular genetic traits predict cranial ischaemic complications in patients with giant cell arteritis

    Get PDF
    \ua9 Author(s) (or their employer(s)) 2024. Re-use permitted under CC BY-NC. No commercial re-use. See rights and permissions. Published by BMJ on behalf of EULAR.Objectives: This project aimed to determine whether cranial ischaemic complications at the presentation of giant cell arteritis (GCA) were associated with pre-existing cardiovascular (CV) risk factors, CV disease or genetic risk of CV-related traits. Methods: 1946 GCA patients with clinicodemographic data at GCA presentation were included. Associations between pre-existing CV-related traits (including Polygenic Risk Scores (PRS) for CV traits) and cranial ischaemic complications were tested. A model for cranial ischaemic complications was optimised using an elastic net approach. Positional gene mapping of associated PRS was performed to improve biological understanding. Results: In a sample of 1946 GCA patients (median age=71, 68.7% female), 17% had cranial ischaemic complications at presentation. In univariable analyses, 10 variables were associated with complications (likelihood-ratio test p≤0.05). In multivariable analysis, the two variables with the strongest effects, with or without PRS in the model, were anticoagulant therapy (adjusted OR (95% CI)=0.21 (0.05 to 0.62), p=4.95 710-3) and age (adjusted OR (95% CI)=1.60 (0.73 to 3.66), p=2.52 710-3, for ≥80 years versus <60 years). In sensitivity analyses omitting anticoagulant therapy from multivariable analysis, age and hypertension were associated with cranial ischaemic complications at presentation (hypertension: adjusted OR (95% CI)=1.35 (1.03 to 1.75), p=0.03). Positional gene mapping of an associated transient ischaemic attack PRS identified TEK, CD96 and MROH9 loci. Conclusion: Age and hypertension were risk factors for cranial ischaemic complications at GCA presentation, but in this dataset, anticoagulation appeared protective. Positional gene mapping suggested a role for immune and coagulation-related pathways in the pathogenesis of complications. Further studies are needed before implementation in clinical practice

    CHAPTER 8. Novel Therapeutic Agents from Bacterial Toxins

    No full text

    Structures of engineered <i>Clostridium botulinum</i> neurotoxin derivatives

    Full text link
    Targeted secretion inhibitors (TSIs) are a new class of engineered biopharmaceutical molecules derived from the botulinum neurotoxins (BoNTs). They consist of the metalloprotease light chain (LC) and translocation domain (Hn) of BoNT; they thus lack the native toxicity towards motor neurons but are able to target soluble N-ethylmaleimide-sensitive fusion protein attachment receptor (SNARE) proteins. These functional fragment (LHn) derivatives are expressed as single-chain proteins and require post-translational activation into di-chain molecules for function. A range of BoNT derivatives have been produced to demonstrate the successful use of engineered SNARE substrate peptides at the LC–Hn interface that gives these molecules self-activating capabilities. Alternatively, recognition sites for specific exoproteases can be engineered to allow controlled activation. Here, the crystal structures of three LHn derivatives are reported between 2.7 and 3.0 Å resolution. Two of these molecules are derivatives of serotype A that contain a SNARE peptide. Additionally, a third structure corresponds to LHn serotype B that includes peptide linkers at the exoprotease activation site. In all three cases the added engineered segments could not be modelled owing to disorder. However, these structures highlight the strong interactions holding the LHn fold together despite the inclusion of significant polypeptide sequences at the LC–Hn interface.</jats:p

    Engineering Botulinum Toxins to Improve and Expand Targeting and SNARE Cleavage Activity

    No full text
    Botulinum neurotoxins (BoNTs) are highly successful protein therapeutics. Over 40 naturally occurring BoNTs have been described thus far and, of those, only 2 are commercially available for clinical use. Different members of the BoNT family present different biological properties but share a similar multi-domain structure at the molecular level. In nature, BoNTs are encoded by DNA in producing clostridial bacteria and, as such, are amenable to recombinant production through insertion of the coding DNA into other bacterial species. This, in turn, creates possibilities for protein engineering. Here, we review the production of BoNTs by the natural host and also recombinant production approaches utilised in the field. Applications of recombinant BoNT-production include the generation of BoNT-derived domain fragments, the creation of novel BoNTs with improved performance and enhanced therapeutic potential, as well as the advancement of BoNT vaccines. In this article, we discuss site directed mutagenesis, used to affect the biological properties of BoNTs, including approaches to alter their binding to neurons and to alter the specificity and kinetics of substrate cleavage. We also discuss the target secretion inhibitor (TSI) platform, in which the neuronal binding domain of BoNTs is substituted with an alternative cellular ligand to re-target the toxins to non-neuronal systems. Understanding and harnessing the potential of the biological diversity of natural BoNTs, together with the ability to engineer novel mutations and further changes to the protein structure, will provide the basis for increasing the scope of future BoNT-based therapeutics

    Structural analysis of Clostridium botulinum neurotoxin type D as a platform for the development of targeted secretion inhibitors

    No full text
    AbstractThe botulinum neurotoxin type D is one of seven highly potent toxins produced by Clostridium botulinum which inhibit neurotransmission at cholinergic nerve terminals. A functional fragment derived from the toxin, LHn, consisting of the catalytic and translocation domains, has been heralded as a platform for the development of targeted secretion inhibitors. These secretion inhibitors are aimed at retargeting the toxin towards a specific cell type to inhibit vesicular secretion. Here we report crystal structures of LHn from serotype D at 2.3?Å and that of SXN101959 at 3.1?Å resolution. SXN101959, a derivative that combines LHn from serotype D with a fragment of the growth hormone releasing hormone, has previously revealed promising results in inhibiting growth hormone release in pituitary somatotrophs. These structures offer for the first time insights into the translocation domain interaction with the catalytic domain in serotype D. Furthermore, structural information from small-angle X-ray scattering of LHn/D is compared among serotypes A, B and D. Taken together, these results demonstrate the robustness of the ‘LHn fold’ across serotypes and its use in engineering additional polypeptide components with added functionality. Our study demonstrates the suitability of botulinum neurotoxin and serotype D in particular, as a basis for engineering novel secretion inhibitors.</jats:p
    corecore