1,138 research outputs found
Probable or Improbable Universe? Correlating Electroweak Vacuum Instability with the Scale of Inflation
Measurements of the Higgs boson and top quark masses indicate that the
Standard Model Higgs potential becomes unstable around
GeV. This instability is cosmologically relevant since quantum fluctuations
during inflation can easily destabilize the electroweak vacuum if the Hubble
parameter during inflation is larger than (as preferred by the
recent BICEP2 measurement). We perform a careful study of the evolution of the
Higgs field during inflation, obtaining different results from those currently
in the literature. We consider both tunneling via a Coleman-de Luccia or
Hawking-Moss instanton, valid when the scale of inflation is below the
instability scale, as well as a statistical treatment via the Fokker-Planck
equation appropriate in the opposite regime. We show that a better
understanding of the post-inflation evolution of the unstable AdS vacuum
regions is crucial for determining the eventual fate of the universe. If these
AdS regions devour all of space, a universe like ours is indeed extremely
unlikely without new physics to stabilize the Higgs potential; however, if
these regions crunch, our universe survives, but inflation must last a few
e-folds longer to compensate for the lost AdS regions. Lastly, we examine the
effects of generic Planck-suppressed corrections to the Higgs potential, which
can be sufficient to stabilize the electroweak vacuum during inflation.Comment: 26 pages, 7 figures. Clarifications added. Matches published version
in JHE
Trunk motion visual feedback during walking improves dynamic balance in older adults: Assessor blinded randomized controlled trial.
BACKGROUND: Virtual reality and augmented feedback have become more prevalent as training methods to improve balance. Few reports exist on the benefits of providing trunk motion visual feedback (VFB) during treadmill walking, and most of those reports only describe within session changes.
RESEARCH QUESTION: To determine whether trunk motion VFB treadmill walking would improve over-ground balance for older adults with self-reported balance problems.
METHODS: 40 adults (75.8 years (SD 6.5)) with self-reported balance difficulties or a history of falling were randomized to a control or experimental group. Everyone walked on a treadmill at a comfortable speed 3×/week for 4 weeks in 2 min bouts separated by a seated rest. The control group was instructed to look at a stationary bulls-eye target while the experimental group also saw a moving cursor superimposed on the stationary bulls-eye that represented VFB of their walking trunk motion. The experimental group was instructed to keep the cursor in the center of the bulls-eye. Somatosensory (monofilaments and joint position testing) and vestibular function (canal specific clinical head impulses) was evaluated prior to intervention. Balance and mobility were tested before and after the intervention using Berg Balance Test, BESTest, mini-BESTest, and Six Minute Walk.
RESULTS: There were no significant differences between groups before the intervention. The experimental group significantly improved on the BESTest (p = 0.031) and the mini-BEST (p = 0.019). The control group did not improve significantly on any measure. Individuals with more profound sensory impairments had a larger improvement on dynamic balance subtests of the BESTest.
SIGNIFICANCE: Older adults with self-reported balance problems improve their dynamic balance after training using trunk motion VFB treadmill walking. Individuals with worse sensory function may benefit more from trunk motion VFB during walking than individuals with intact sensory function
Development of a liquid chromatography tandem mass spectrometry method for the simultaneous measurement of voriconazole, posaconazole and itraconazole
Background Azole-based antifungals are the first-line therapy for some of the most common mycoses and are now also being used prophylactically to protect immunocompromised patients. However, due to variability in both their metabolism and bioavailability, therapeutic drug monitoring is essential to avoid toxicity but still gain maximum efficacy. Methods Following protein precipitation of serum with acetonitrile, 20 µL of extract was injected onto a 2.1 × 50 mm Waters Atlantis dC18 3 µm column. Detection was via a Waters Quattro Premier XE tandem mass spectrometer operating in ESI-positive mode. Multiple reaction monitoring (MRM) detected two product ions for each compound and one for each isotopically labelled internal standard. Ion suppression, linearity, stability, matrix effects, recovery, imprecision, lower limits of measuring interval and detection were all assessed. Results Optimal chromatographic separation was achieved using gradient elution over 8 minutes. Voriconazole, posaconazole and itraconazole eluted at 1.71, 2.73 and 3.41 min, respectively. The lower limits of measuring interval for all three compounds was 0.1 mg/L. The assay was linear to 10 mg/L for voriconazole (R2 = 0.995) and 5 mg/L for posaconazole (R2 = 0.990) and itraconazole (R2 = 0.991). The assay was both highly accurate and precise with % bias of voriconazole, posaconazole and itraconazole, respectively, when compared with previous NEQAS samples. The intra-assay precision (CV%) was 1.6%, 2.5% and 1.9% for voriconazole, posaconazole and itraconazole, respectively, across the linear range. Conclusion A simple and robust method has been validated for azole antifungal therapeutic drug monitoring. This new assay will result in a greatly improved sample turnaround time and will therefore vastly increase the clinical utility of azole antifungal drug monitoring. </jats:sec
Donald Trump has escaped criticism for the $2 trillion Covid-19 stimulus. A Democratic president would not have.
Last week President Trump signed an unprecedented $2 trillion stimulus bill aimed at protecting workers and businesses threatened by the Covid-19 pandemic. Perhaps equally surprising was the relative lack of opposition from Republicans, who at other times are opposed to increased government spending and growing deficits. Drawing on their work on how party-supporters feel about budget deficits and how the media reports on them, Ian G. Anson and John V. Kane write that these supporters are less concerned about deficits when a president from their own party holds the White House. The role of conservative media, they comment, means that this effect is especially stark for a Republican president like Donald Trump
East African lake evidence for Pliocene millennial-scale climate variability
Late Cenozoic climate history in Africa was punctuated by episodes of variability, characterized by the appearance and disappearance of large freshwater lakes within the East African Rift Valley. In the Baringo-Bogoria basin, a well-dated sequence of diatomites and fluviolacustrine sediments documents the precessionally forced cycling of an extensive lake system between 2.70 Ma and 2.55 Ma. One diatomite unit was studied, using the oxygen isotope composition of diatom silica combined with X-ray fluorescence spectrometry and taxonomic assemblage changes, to explore the nature of climate variability during this interval. Data reveal a rapid onset and gradual decline of deepwater lake conditions, which exhibit millennial-scale cyclicity of ∼1400–1700 yr, similar to late Quaternary Dansgaard-Oeschger events. These cycles are thought to reflect enhanced precipitation coincident with increased monsoonal strength, suggesting the existence of a teleconnection between the high latitudes and East Africa during this period. Such climatic variability could have affected faunal and floral evolution at the time
Stochastic modeling of seafloor morphology
Thesis (Ph. D.)--Joint Program in Oceanography (Massachusetts Institute of Technology, Dept. of Earth, Atmospheric, and Planetary Sciences; and the Woods Hole Oceanographic Institution), June 1990."April 1990."At scale lengths less than 100 km or so, statistical descriptions of seafloor morphology can be usefully employed to characterize processes which form and reshape abyssal hills, including ridge crest volcanism, off-axis tectonics and volcanism, mass wasting, sedimentation, and post-depositional transport. The objectives of this thesis are threefold: (1) to identify stochastic parameterizations of small-scale topography that are geologically useful, (2) to implement procedures for estimating these parameters from multibeam and side-scan sonar surveys that take into account the finite precision, resolution, and sampling of real data sets, and (3) to apply these techniques to the study of marine geological problems. The seafloor is initially modeled as a stationary, zero-mean, Gaussian random field completely specified by its two-point covariance function. An anisotropic two-point covariance function is introduced that has five free parameters describing the amplitude, orientation, characteristic width and length, and Hausdorff (fractal) dimension of seafloor topography. The general forward problem is then formulated relating this model to the statistics of an ideal multibeam echo sounder, in particular the along-track auto-covariance functions of individual beams and the cross-covariance functions between beams of arbitrary separation. Using these second moments as data functionals, we then pose the inverse problem of estimating the seafloor parameters from realistic, noisy data sets with finite sampling and beamwidth, and we solve this inverse problem by an iterative, linearized, least squares method. Resolution of this algorithm is tested against ship variables such as length of data, the orientation of ship track with respect to topographic grain, and the beamwidth. This analysis is conducted by inverting sets of synthetic data with known statistics. The mean and standard deviation of the inverted parameters can be directly compared with the input parameters and the standard errors output from the inversion. The experiments conducted in this study show that the rms seafloor height can be estimated to within -15% and anisotropic orientation to within ~5* (for a strong lineation) using very short track lengths (down to 3 characteristic lengths, or -10 to 100 km), and characteristic lengths of seafloor topography can be estimated to within -25% using fairly short track lengths (down to 5 or 6 characteristic lengths, or 10's of km to -200 kin). The number of characteristic lengths sampled by a ship track, and hence the accuracy of the estimation, is maximized when the ship track runs perpendicular to abyssal hill lineation. Using the assumed beamwidth, the measured noise values, and the seafloor parameters recovered from the inversion, Sea Beam "synthetics" are generated whose statistical character can be directly compared with raw Sea Beam data. However, these comparisons are spatially limited in the athwart ship direction. A recent SeaMARC II survey along the flanks and crest of the East Pacific Rise between 130 and 15* N included sufficient off-axis topography to permit a comparison of a complete 2-D synthetic topographic field with a region of abyssal-hill terrain that has close to 100% data coverage. Synthetic data is compared to both Sea Beam swaths and SeaMARC II survey data. These comparisons generally indicate that we are successful in characterizing the second order properties of the seafloor. They also indicate the directions we will need to take to improve our modeling, including generalization of the second-order model and characterization of higher moments. The inversion procedure is applied to a data set of 64 near-ridge Sea Beam swaths to characterize near ridge abyssal hill morphology and its relationship to ridge properties. Much of the data (27 swaths) comes from cruises to the Pacific-Cocos spreading section of the East Pacific Rise between 9* and 15* N. These data provide very good abyssal hill coverage of this well-mapped and studied ridge section and form the basis of a regional analysis of the correlation between ridge morphology and stochastic abyssal hill parameters. This regional analysis suggests a strong relationship between magma supply and the character of abyssal hills. We also have data from near the Rivera (9) and Nazca (7) spreading sections of the East Pacific Rise, the Mid-Atlantic Ridge (18), and the Indian- African Ridge (3). Though spotty, this constitutes a good initial data set for the analysis of correlations among covariance parameters and between parameters and ridge characteristics, especially spreading rate. A working hypothesis is introduced to explain the observations within a geological framework. This hypothesis contends 1) that the maximum size of abyssal hills is related to the lithosphere's ability to elastically support the load, 2) that fissuring and horst and graben formation dominate abyssal hill formation at fast spreading ridges, and 3) that volcanic edifice formation, modified by faulting driven by lithospheric necking, dominates abyssal hill formation at slow spreading ridges. To quantify abyssal hill characteristics such as vertical and lateral asymmetry and "peakiness" we must appeal to higher statistical moments than order two. A mathematical framework is introduced for the study of higher moments of a topographic field. This framework is built upon the concept that lower-order moment provide the groundwork for studying the higher-order moments. A simple 1-D parameterized model is proposed for moments up to order 4. This model includes two parameters for the third moment, describing vertical and lateral asymmetries, and one for the fourth moment, which describes the peakiness of topography. Initial methods are developed for estimating these parameters from bathymetric profiles. Results from the near ridge data set are presented and interpreted with regard to abyssal hill forming processes.by John Anson Goff.Ph.D
Improving model predictive controller turnaround time using restricted Lagrangians
We present a new application of proper orthogonal decomposition (POD) to optimal control. By restricting the Lagrangian of an optimal control problem to a suitable affine subspace, we can achieve a reduction in computational cost leading to faster turnaround times with minimal degradation in controller performance. An explicit algorithm for nonlinear model predictive control (NMPC) reduction using POD is presented along with some initial error analysis. To the best of our knowledge, this is the first time such an approach has been presented. We applied this approach to the control of a vehicle during a double lane change maneuver using NMPC and achieved 2 times faster turnaround times with excellent controller performance. This reduction approach for the development of real-time optimal controls is very promising and introduces some new research directions.This work was supported by Natural Sciences and Engineering Research Council of Canada (NSERC), the Toyota Motor Corporation and MaplesoftTM.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/142387/1/2017_IEEE.pd
- …
