179 research outputs found

    Heavy mineral stratigraphy of the Unayzah Formation and Basal Khuff Clastics (Carboniferous to Permian) of Central Saudi Arabia

    Get PDF
    A study of heavy mineral assemblages in the Unayzah Reservoir sandstones of central Saudi Arabia has identified successive changes in provenance signature. These define four heavy mineral units that are of regional extent and largely coincident with the four main depositional units defined by previous authors: Unayzah C, Unayzah B, Unayzah A and the Basal Khuff Clastics. Sandstone bodies with anomalous mineral signatures also occur, however, especially within the Unayzah B Member. These are attributed to local supply of sand from pre-Unayzah Paleozoic sandstones exposed on the Central Arabian Arch and on intrabasinal highs. The stratigraphic changes in mineralogy reflect successive developments in the geography and climate of the region and in the pattern of sand sourcing and transport. The Unayzah C sands and the majority of Unayzah B sands were derived from the south but whereas the southerly derived Unayzah C sands appear to have been derived from pre-existing mature sandstones, those of Unayzah B were sourced from a wider range of rock types including crystalline basement. This contrast is interpreted as indicating that a significant hiatus may separate the two units. The Unayzah B sands are also characterised by the common presence of apatite, indicating that the source rocks were relatively unweathered. This observation is compatible with the glacial origin attributed to many of the Unayzah B sediments. A further change in provenance signature takes place at the base the newly recognised ‘un-named middle Unayzah member’, equivalent to the base of Unayzah A of previous authors. This is associated with the onset of red-bed sedimentation throughout the area. Unayzah A sedimentation was terminated by a fall in sea level that led to the formation of a widespread unconformity and to the development of deeply incised valleys along the western basin margin. In most of the study area this unconformity corresponds to the base of the Khuff Formation, but in the east of the area, where the succession is more complete, it is believed to occur within the Unayzah Formation, at a level equivalent to the base of the Upper Gharif Member of Oman. By identifying lateral and vertical changes in sand provenance, heavy mineral analysis provides an important additional tool in the stratigraphic analysis of the Permian sandstone succession of Saudi Arabia, both at the regional scale and wand at the scale of individual reservoir sandstone successions

    Development of a biomarker for penconazole: a human oral dosing study and a survey of UK residents’ exposure

    Get PDF
    Penconazole is a widely used fungicide in the UK; however, to date, there have been no peer-reviewed publications reporting human metabolism, excretion or biological monitoring data. The objectives of this study were to i) develop a robust analytical method, ii) determine biomarker levels in volunteers exposed to penconazole, and, finally, to iii) measure the metabolites in samples collected as part of a large investigation of rural residents’ exposure. An LC-MS/MS method was developed for penconazole and two oxidative metabolites. Three volunteers received a single oral dose of 0.03 mg/kg body weight and timed urine samples were collected and analysed. The volunteer study demonstrated that both penconazole-OH and penconazole-COOH are excreted in humans following an oral dose and are viable biomarkers. Excretion is rapid with a half-life of less than four hours. Mean recovery of the administered dose was 47% (range 33%–54%) in urine treated with glucuronidase to hydrolyse any conjugates. The results from the residents’ study showed that levels of penconazole-COOH in this population were low with >80% below the limit of detection. Future sampling strategies that include both end of exposure and next day urine samples, as well as contextual data about the route and time of exposure, are recommended

    Organic aerosol formation from the oxidation of biogenic hydrocarbons

    Get PDF
    A series of outdoor chamber experiments has been used to establish and characterize the significant atmospheric aerosol-forming potentials of the most prevalent biogenic hydrocarbons emitted by vegetation. These compounds were also studied to elucidate the effect of structure on aerosol yield for these types of compounds. Because oxidation products partition between the gas and aerosol phases, the aerosol yields of the parent biogenic hydrocarbons depend on the concentration of organic aerosol into which these products can be absorbed. For organic mass concentrations between 5 and 40 µg m^(-3), mass-based yields in photooxidation experiments range from 17 to 67% for sesquiterpenes, from 2 to 23% for cyclic diolefins, from 2 to 15% for bicyclic olefins, and from 2 to 6% for the acyclic triolefin ocimene. In these photooxidation experiments, hydroxyl and nitrate radicals and ozone can contribute to consumption of the parent hydrocarbon. For bicyclic olefins (α-pinene, β-pinene, Δ^3-carene, and sabinene), experiments were also carried out at daytime temperatures in a dark system in the presence of ozone or nitrate radicals alone. For ozonolysis experiments, resulting aerosol yields are less dependent on organic mass concentration, when compared to full, sunlight-driven photooxidation. Nitrate radical experiments exhibit extremely high conversion to aerosol for β-pinene, sabinene, and Δ^3-carene. The relative importance of aerosol formation from each type of reaction for bicyclic olefin photooxidation is elucidated

    Estimate of global atmospheric organic aerosol from oxidation of biogenic hydrocarbons

    Get PDF
    The results from a series of outdoor chamber experiments establishing the atmospheric aerosol-forming potential of fourteen terpenoid hydrocarbons have been used to estimate the annual amount of secondary organic aerosol formed globally from compounds emitted by vegetation. Hydroxyl radical, ozone, and nitrate radical oxidation each contribute to aerosol formation in full-photooxidation experiments; because oxidation by nitrate radical under ambient, remote conditions is likely to be negligible, parameters describing aerosol formation from hydroxyl radical and ozone reaction only are developed. Chamber results, temporally and spatially resolved, compound-specific estimates of biogenic hydrocarbon emissions, and hydroxyl radical and ozone fields are combined to lead to an estimate for atmospheric secondary organic aerosol formed annually from biogenic precursors of 18.5 Tg, a number smaller than the previously published estimate of 30–270 Tg [Andreae and Crutzen, 1997]

    Observation of gaseous and particulate products of monoterpene oxidation in forest atmospheres

    Get PDF
    Atmospheric oxidation of biogenic hydrocarbons, such as monoterpenes, is estimated to be a significant source of global aerosol. Whereas laboratory studies have established that photochemical oxidation of monoterpenes leads to aerosol formation, there are limited field studies detecting such oxidation products in ambient aerosols. Drawing on prior results of monoterpene product analysis under controlled smog chamber conditions, we have identified organic aerosol components attributable to monoterpene oxidation in two forest atmospheres, Kejimkujik National Park, Nova Scotia, Canada, and Big Bear, San Bernardino National Forest, California, U.S.A. The major identified aerosol products derived from α-pinene and β-pinene oxidation include pinic acid, pinonic acid, norpinonic acid and its isomers, hydroxy pinonaldehydes, and pinonaldehyde, concentrations of which in the aerosol phase are in the sub ng m^(−3) range. Identification of oxidation products in atmospheric aerosol samples serves as direct evidence for aerosol formation from monoterpenes under ambient conditions

    New particle formation from photooxidation of diiodomethane (CH_2I_2)

    Get PDF
    Photolysis of CH_2I_2 in the presence of O_3 has been proposed as a mechanism leading to intense new particle formation in coastal areas. We report here a comprehensive laboratory chamber study of this system. Rapid homogeneous nucleation was observed over three orders of magnitude in CH_2I_2 mixing ratio, down to a level of 15 ppt (∼4 × 10^8 molec. cm^(−3)) comparable to the directly measured total gas-phase iodine species concentrations in coastal areas. After the nucleation burst, the observed aerosol dynamics in the chamber was dominated by condensation of additional vapors onto existing particles and particle coagulation. Particles formed under dry conditions are fractal agglomerates with mass fractal dimension, D_f ∼ 1.8–2.5. Higher relative humidity (65%) does not change the nucleation or growth behavior from that under dry conditions, but results in more compact and dense particles (D_f ∼ 2.7). On the basis of the known gas-phase chemistry, OIO is the most likely gas-phase species to produce the observed nucleation and aerosol growth; however, the current understanding of this chemistry is very likely incomplete. Chemical analysis of the aerosol using an Aerodyne Aerosol Mass Spectrometer reveals that the particles are composed mainly of iodine oxides but also contain water and/or iodine oxyacids. The system studied here can produce nucleation events as intense as those observed in coastal areas. On the basis of comparison between the particle composition, hygroscopicity, and nucleation and growth rates observed in coastal nucleation and in the experiments reported here, it is likely that photooxidation of CH_2I_2, probably aided by other organic iodine compounds, is the mechanism leading to the observed new particle formation in the west coast of Ireland

    Engaging with community researchers for exposure science: lessons learned from a pesticide biomonitoring study

    Get PDF
    A major challenge in biomonitoring studies with members of the general public is ensuring their continued involvement throughout the necessary length of the research. The paper presents evidence on the use of community researchers, recruited from local study areas, as a mechanism for ensuring effective recruitment and retention of farmer and resident participants for a pesticides biomonitoring study. The evidence presented suggests that community researchers' abilities to build and sustain trusting relationships with participants enhanced the rigour of the study as a result of their on-the-ground responsiveness and flexibility resulting in data collection beyond targets expected

    Performing thinking in action: the meletē of live coding

    Get PDF
    Within this article, live coding is conceived as a meletē, an Ancient Greek term used to describe a meditative thought experiment or exercise in thought, especially understood as a preparatory practice supporting other forms of critical — even ethical — action. Underpinned by the principle of performing its thinking through 'showing the screen', live coding involves 'making visible' the process of its own unfolding through the public sharing of live decision-making within improvisatory performance practice. Live coding can also be conceived as the performing of 'thinking-in-action', a live and embodied navigation of various critical thresholds, affordances and restraints, where its thinking-knowing cannot be easily transmitted nor is it strictly a latent knowledge or 'know how' activated through action. Live coding involves the live negotiation between receptivity and spontaneity, between the embodied and intuitive, between an immersive flow experience and split-attention, between human and machine, the known and not yet known. Moreover, in performing 'thinking-in-action', live coding emerges as an experimental site for reflecting on different perceptions and possibilities of temporal experience within live performance: for attending to the threshold between the live and mediated, between present and future-present, proposing even a quality of atemporality or aliveness

    How many steps/day are enough? for adults

    Get PDF
    Physical activity guidelines from around the world are typically expressed in terms of frequency, duration, and intensity parameters. Objective monitoring using pedometers and accelerometers offers a new opportunity to measure and communicate physical activity in terms of steps/day. Various step-based versions or translations of physical activity guidelines are emerging, reflecting public interest in such guidance. However, there appears to be a wide discrepancy in the exact values that are being communicated. It makes sense that step-based recommendations should be harmonious with existing evidence-based public health guidelines that recognize that "some physical activity is better than none" while maintaining a focus on time spent in moderate-to-vigorous physical activity (MVPA). Thus, the purpose of this review was to update our existing knowledge of "How many steps/day are enough?", and to inform step-based recommendations consistent with current physical activity guidelines. Normative data indicate that healthy adults typically take between 4,000 and 18,000 steps/day, and that 10,000 steps/day is reasonable for this population, although there are notable "low active populations." Interventions demonstrate incremental increases on the order of 2,000-2,500 steps/day. The results of seven different controlled studies demonstrate that there is a strong relationship between cadence and intensity. Further, despite some inter-individual variation, 100 steps/minute represents a reasonable floor value indicative of moderate intensity walking. Multiplying this cadence by 30 minutes (i.e., typical of a daily recommendation) produces a minimum of 3,000 steps that is best used as a heuristic (i.e., guiding) value, but these steps must be taken over and above habitual activity levels to be a true expression of free-living steps/day that also includes recommendations for minimal amounts of time in MVPA. Computed steps/day translations of time in MVPA that also include estimates of habitual activity levels equate to 7,100 to 11,000 steps/day. A direct estimate of minimal amounts of MVPA accumulated in the course of objectively monitored free-living behaviour is 7,000-8,000 steps/day. A scale that spans a wide range of incremental increases in steps/day and is congruent with public health recognition that "some physical activity is better than none," yet still incorporates step-based translations of recommended amounts of time in MVPA may be useful in research and practice. The full range of users (researchers to practitioners to the general public) of objective monitoring instruments that provide step-based outputs require good reference data and evidence-based recommendations to be able to design effective health messages congruent with public health physical activity guidelines, guide behaviour change, and ultimately measure, track, and interpret steps/day
    corecore