2,362 research outputs found
Distribution and incidence of viruses in Irish seed potato crops
peer-reviewedVirus diseases are of key importance in potato production and in particular for the production of disease-free potato seed. However, there is little known about the frequency and distribution of potato virus diseases in Ireland. Despite a large number of samples being tested each year, the data has never been collated either within or across years. Information from all known potato virus testing carried out in the years 2006–2012 by the Department of Agriculture Food and Marine was collated to give an indication of the distribution and incidence of potato virus in Ireland. It was found that there was significant variation between regions, varieties, years and seed classes. A definition of daily weather data suitable for aphid flight was developed, which accounted for a significant proportion of the variation in virus incidence between years. This use of weather data to predict virus risk could be developed to form the basis of an integrated pest management approach for aphid control in Irish potato crops
Understanding the Delayed-Keyword Effect on Metacomprehension Accuracy
The typical finding from research on metacomprehension is that accuracy is quite low. However, recent studies have shown robust accuracy improvements when judgments follow certain generation tasks (summarizing or keyword listing), but only when these tasks are performed at a delay rather than immediately after reading (Thiede & Anderson, 2003; Thiede, Anderson & Therriault, 2003). The delayed and immediate conditions in these past studies confounded the delay between reading and generation tasks with other task lags, such as the lag between multiple generation tasks and the lag between generation tasks and judgments. The first two experiments disentangle these confounded manipulations and provide clear evidence that the delay between reading and keyword generation is the only lag critical to improving metacomprehension accuracy. The third and fourth experiments show that not all delayed tasks will produce improvements and suggest that delayed generative tasks provide diagnostic cues about comprehension that are necessary for improving metacomprehension accuracy
Separation and Purification of Mineral Salts from Spacecraft Wastewater Processing via Electrostatic Beneficiation
Electrostatic separation is a class of material processing technologies commonly used for the sorting of coarse mixtures by means of electrical forces acting on charged or polarized particles. Most if not all of the existing tribo-electrostatic separators had been initially developed for mineral ores beneficiation. It is a well-known process that has been successfully used to separate coal from minerals. Potash (potassium) enrichment where underground salt mines containing large amounts of sodium is another use of this techno logy. Through modification this technology can be used for spacecraft wastewater brine beneficiation. This will add in closing the gap be~een traveling around Earth's Gravity well and long-term space explorations. Food has been brought on all man missions, which is why plant growth for food crops continues to be of interest to NASA. For long-term mission considerations food productions is one of the top priorities. Nutrient recovery is essential for surviving in or past low earth orbit. In our advance bio-regenerative process instead of nitrogen gas produced; soluble nitrate salts that can be recovered for plant fertilizer would be produced instead. The only part missing is the beneficiation of brine to separate the potassium from the sodium. The use of electrostatic beneficiation in this experiment utilizes the electrical charge differences between aluminum and dried brine by surface contact. The helixes within the aluminum tribocharger allows for more surface contact when being agitated. When two materials are in contact, the material with the highest affinity for electrons becomes negatively charged, while the other becomes positively charged. This contact exchange of charge may cause the particles to agglomerate depending on their residence time within the tribocharger, compromising the efficiency of separation. The aim of this experiment is to further the development in electrostatic beneficiation by optimizing the separation of ersatz and possibly real wastewater brine residues. In doing so, ideally it will yield a high potassium enrichment for use in spacecraft plant systems
Pharmacotherapy for neonatal seizures: current knowledge and future perspectives
Seizures are the most common neurological emergencies in the neonatal period and are associated with poor neurodevelopmental outcomes. Seizures affect up to five per 1000 term births and population-based studies suggest that they occur even more frequently in premature infants. Seizures are a sign of an underlying cerebral pathology, the most common of which is hypoxic-ischaemic encephalopathy in term infants. Due to a growing body of evidence that seizures exacerbate cerebral injury, effective diagnosis and treatment of neonatal seizures is of paramount importance to reduce long-term adverse outcomes. Electroencephalography is essential for the diagnosis of seizures in neonates due to their subtle clinical expression, non-specific neurological presentation and a high frequency of electro-clinical uncoupling in the neonatal period. Hypoxic-ischaemic encephalopathy may require neuroprotective therapeutic hypothermia, accompanying sedation with opioids, anticonvulsant drugs or a combination of all of these. The efficacy, safety, tolerability and pharmacokinetics of seven anticonvulsant drugs (phenobarbital, phenytoin, levetiracetam, lidocaine, midazolam, topiramate and bumetanide) are reviewed. This review is focused only on studies reporting electrographically confirmed seizures and highlights the knowledge gaps that exist in optimal treatment regimens for neonatal seizures. Randomised controlled trials are needed to establish a safe and effective treatment protocol for neonatal seizures
Observation of two-dimensional Fermi surface and Dirac dispersion in YbMnSb
We present the crystal structure, electronic structure, and transport
properties of the material YbMnSb, a candidate system for the investigation
of Dirac physics in the presence of magnetic order. Our measurements reveal
that this system is a low-carrier-density semimetal with a 2D Fermi surface
arising from a Dirac dispersion, consistent with the predictions of density
functional theory calculations of the antiferromagnetic system. The low
temperature resistivity is very large, suggesting scattering in this system is
highly efficient at dissipating momentum despite its Dirac-like nature.Comment: 8 pages, 6 figure
The Chinese Student Protection Act and Enhanced Consideration for PRC Nationals: Legitimizing Foreign Policy While Averting False Positives in Asylum Law
The Growing Influence of Immigrants on American Politics
Reviewing: Tom K. Wong, The Politics of Immigration: Partisanship, Demographic Change, and American National Identit
Ab initio structure search and in situ 7Li NMR studies of discharge products in the Li-S battery system.
The high theoretical gravimetric capacity of the Li-S battery system makes it an attractive candidate for numerous energy storage applications. In practice, cell performance is plagued by low practical capacity and poor cycling. In an effort to explore the mechanism of the discharge with the goal of better understanding performance, we examine the Li-S phase diagram using computational techniques and complement this with an in situ (7)Li NMR study of the cell during discharge. Both the computational and experimental studies are consistent with the suggestion that the only solid product formed in the cell is Li2S, formed soon after cell discharge is initiated. In situ NMR spectroscopy also allows the direct observation of soluble Li(+)-species during cell discharge; species that are known to be highly detrimental to capacity retention. We suggest that during the first discharge plateau, S is reduced to soluble polysulfide species concurrently with the formation of a solid component (Li2S) which forms near the beginning of the first plateau, in the cell configuration studied here. The NMR data suggest that the second plateau is defined by the reduction of the residual soluble species to solid product (Li2S). A ternary diagram is presented to rationalize the phases observed with NMR during the discharge pathway and provide thermodynamic underpinnings for the shape of the discharge profile as a function of cell composition.Fellowship support to KAS from the ConvEne IGERT Program of the National Science Foundation (DGE 0801627) is gratefully acknowledged. AJM acknowledges the support from the Winton Programme for the Physics of Sus-tainability. PDM and DSW thank the UK-EPSRC for financial support. This research made use of the shared experimental facilities of the Materials Research Laboratory (MRL), sup-ported by the MRSEC Program of the NSF under Award No. DMR 1121053. The MRL is a member of the NSF-funded Mate-rials Research Facilities Network (www.mrfn.org). CPG and ML thank the U.S. DOE Office of Vehicle Technologies (Con-tract No. DE-AC02-05CH11231) and the EU ERC (via an Ad-vanced Fellowship to CPG) for funding.This is the final published version. It first appeared at http://pubs.acs.org/doi/abs/10.1021/ja508982p
One Person, One Vote - Why Citizens\u27 Votes Carry Unequal Weight despite \u3ci\u3eBaker\u3c/i\u3e and How It Matters
- …
